Equilibrium in the Computing Continuum through Active Inference
Apr 1, 2024·,,,·
0 min read
Boris Sedlak
Victor Casamayor Pujol
Praveen Kumar Donta
Schahram Dustdar
Abstract
Computing Continuum (CC) systems are challenged to ensure the intricate requirements of each computational tier. Given the system’s scale, the Service Level Objectives (SLOs), which are expressed as these requirements, must be disaggregated into smaller parts that can be decentralized. We present our framework for collaborative edge intelligence, enabling individual edge devices to (1) develop a causal understanding of how to enforce their SLOs and (2) transfer knowledge to speed up the onboarding of heterogeneous devices. Through collaboration, they (3) increase the scope of SLO fulfillment. We implemented the framework and evaluated a use case in which a CC system is responsible for ensuring Quality of Service (QoS) and Quality of Experience (QoE) during video streaming. Our results showed that edge devices required only ten training rounds to ensure four SLOs; furthermore, the underlying causal structures were also rationally explainable. The addition of new types of devices can be done a posteriori; the framework allowed them to reuse existing models, even though the device type had been unknown. Finally, rebalancing the load within a device cluster allowed individual edge devices to recover their SLO compliance after a network failure from 22% to 89%.
Type
Publication
Future Generation Computer System