Multi-dimensional Autoscaling of Processing Services: A Comparison of Agent-based Methods
Jun 1, 2025·,,,,·
1 min read
Boris Sedlak
Alireza Furutanpey
Zihang Wang
Víctor Casamayor Pujol
Schahram Dustdar
Abstract
Edge computing breaks with traditional autoscaling due to strict resource constraints, thus, motivating more flexible scaling behaviors using multiple elasticity dimensions. This work introduces an agent-based autoscaling framework that dynamically adjusts both hardware resources and internal service configurations to maximize requirements fulfillment in constrained environments. We compare four types of scaling agents: Active Inference, Deep Q Network, Analysis of Structural Knowledge, and Deep Active Inference, using two real-world processing services running in parallel: YOLOv8 for visual recognition and OpenCV for QR code detection. Results show all agents achieve acceptable SLO performance with varying convergence patterns. While the Deep Q Network benefits from pre-training, the structural analysis converges quickly, and the deep active inference agent combines theoretical foundations with practical scalability advantages. Our findings provide evidence for the viability of multi-dimensional agent-based autoscaling for edge environments and encourage future work in this research direction.
Type
Publication
arXiv
Add the full text or supplementary notes for the publication here using Markdown formatting.