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Current State

• Distributed Systems are key to our 
society

• Underlie our critical infrastructures 
and applications (Smart cities, 
Healthcare, Autonomous vehicles,…)

• Interconnectedness (fabric) of 
components (HW, SW, People) 
induces complexity 

• We increasingly see fundamental 
issues we need to address
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Distributed Compute Continuum: A high level view

Low reliability

Volatility

Mobility

(Mostly) Wireless connectivity

Small form factor

Battery constraints

Mobile, IoT, smart home, vehicles, …
User/Service provider controlled

Edge of the (mobile) network

Low latency to end device

Close to/collocated with 4G/5G base 
stations

General purpose compute 
infrastructure

Standards-based architectures & 
management/orchestration stacks

Telecom operator controlled

“Unlimited” compute/storage 
resources

Full spectrum of cloud 
services

High availability

Lower cost

Higher latency vs. edge/fog

Cloud provider controlled
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Human 
Ecosystem

Infrastructure 
Systems

Regulation 
SystemsEndocrine 

System

Lymphatic 
System

Cardiovascular 
System

Skeletal 
System

Nervous System

• Brain

• Spinal Cord

• Cranial Nerves

• Spinal Nerves

Control Internal Environment, Memory and Learning (86 billion neurons)

• Oxygen

• White Blood Cells

• Hormones

• Nutrients

Helping the body meet the demands (40k neurons)

The human body is comprised of a series of complex systems, including:
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Human 
Ecosystem

Cardiovascular 
System

Skeletal 
System

Lymphatic 
System
Endocrine 
System

The human body is comprised of a series of complex systems, including:

Nervous System Infrastructure 
Systems

Regulation 
Systems
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Human 
Ecosystem

• Part of the immune 
system

• Protects your body against foreign invaders

Infrastructure 
Systems

Cardiovascular 
System

Skeletal 
System

Lymphatic 
System
Endocrine 
System

Regulation 
Systems

The human body is comprised of a series of complex systems, including:

Nervous System

DeepSLOs

Collaborative Learning

Representation Learning

Zero Trust
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Distributed Computing Continuum 
Systems are composite complex systems

Infrastructure Systems

• Devices & Sensors

• Learning & Knowledge

Skeletal  System

Regulation Systems
• Elasticity 

Systems
• Self-adaptive Systems

• Fault-tolerance Systems

• Privacy & Security

Nervous  System
Cardiovascular  System

.

.

.

4G/5G

• Connection & Communication

• Data Flow

Learning & Knowledge

CPU

Connection fail

Device fail
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stretch when a force stresses them

shrink when the stress is removed

(Physics) The property of returning to an initial form or state following deformation

Elasticity (Resilience)

e.g.,  acquire new resources, reduce quality

e.g., release resources, increase quality
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Elasticity > Scalability

Dustdar S., Guo Y., Satzger B., Truong H. (2012) Principles of Elastic Processes, IEEE Internet Computing, Volume: 16, Issue: 6, Nov.-Dec. 2012
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http://www.infosys.tuwien.ac.at/Staff/sd/papers/Zeitschriftenartikel%20PrinciplesOfElasticProcesses%20SD.pdf
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6355499


Elasticity Model for Edge & Cloud Services
Moldovan D., G. Copil,Truong H.-L., Dustdar S. (2013). MELA: Monitoring and Analyzing Elasticity of Cloud Service. CloudCom 2013

Elasticity space functions:  to determine if a service 
unit/service is in the “elasticity behavior”

Elasticity Pathway functions: to characterize the 
elasticity behavior from a general/particular view 

Elasticity Space
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The Cartesian Blanket
Adapting elasticity in the continuum

• System control based SLOs (Service Level Objectives)

• SLOs are represented as thresholds on the Cartesian 
space

• The system space is delimited within an hexahedron. 
• There is minimum and maximum value for each variable
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• The space is constraint to the actual infrastructure 
characteristics; not homogenous.

• The infrastructure is represented as points, not 
unlimited.

• The only valid infrastructure is the one inside the 
hexahedron.
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Adapting elasticity in the continuum
The Cartesian Blanket



The Cartesian Blanket

• The system space possible configurations can be 
visualized as a stretched blanket over the 
infrastructure points.

• Assuming linear interpolation on the space between the 
infrastructure components.

• Now we have the system represented, but

How can this representation help on the design 
and management of the distributed computing 

continuum systems?
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Adapting elasticity in the continuum



Infrastructure

➢ Computing continuum

➢ Application performance highly dependent on the underlying infrastructure

○ Heterogeneity of resources & heterogeneous distribution

○ Resources diverse interconnection

➢ Sustainability
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Infrastructure & Applications – Modeling issues

How we model these systems? What is the “self” for the system?

Centralized vs. Agent-based

● Composability / Nested capacity / Dynamic configuration.
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Intelligence and Behavior

➢ Bring intelligence to the underlying infrastructure
➢ Let’s use SLOs for that! 
➢ But, let’s talk about them

○ Not only business-oriented
○ At different levels of the system

■ Devices
■ Services
■ Application
■ …

○ Mechanisms to control interactions and system components
○ Tailored elasticity strategies
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Markov Blanket

In a Bayesian Network, the Markov Blanket of a node 

(N) is composed of the parents (P), the children (C) and 

the co-parents of the children (S).  

P P

N S

C C

The Markov Blanket of a random variable is the subset of nodes that provide enough 
information to statistically infer its value. Concept from Judea Pearl [1].

A tool for causal filtering.

17[1] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc.



Causal Inference

➢ Discover & leverage causal relationships.

➢ 3 Rungs on the ladder of causation. [2]

○ Observational

○ Interventional

○ Counterfactual

➢ Explainability capacity

SLO

18[2] J. Pearl and D. Mackenzie (2018), The Book of Why: The New Science of Cause and Effect. USA: Basic Books, Inc.,



DeepSLOs

➢ A construct we envision relating SLOs

➢ Provides a complete view of DCC system

➢ Allows aggregation towards higher abstractions

SLO 
B

SLO 
C

SLO 
A

SLO 
D
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Metric 
B

SLO 3

Elastic strategy δ

Metric 
A

SLO 2

DeepSLOs
Metric 

C

SLO 1

Metric 
E

SLO 4

Metric 
D

Elastic strategy β

Elastic strategy γ

Elastic strategy α

Abstraction

DeepSLOs as a hierarchically structured set of SLOs that 

relate causally and purposefully, holistically integrating all 

system needs. 

1. A single DeepSLO can be in charge of an autonomic 

component of the system, providing ad-hoc 

objectives and elastic strategies at different 

abstraction levels, and mapping into the 

infrastructure.

2. Horizontal relations are within the same level of 

abstraction, vertical relations incorporate purpose 

and lead to different abstraction levels.
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Metric 
B

SLO 3

Elastic strategy δ

Metric 
A

SLO 2

DeepSLOs
Metric 

C

SLO 1

Metric 
E

SLO 4

Metric 
D

Elastic strategy β

Elastic strategy γ

Elastic strategy α

Abstraction

DeepSLOs as a hierarchically structured set of SLOs that 

relate causally and purposefully, holistically integrating all 

system needs. 

3. A complete DCCS can be mapped with several 

DeepSLO that connect at their highest level, allowing 

each DeepSLO to properly propagate towards the 

infrastructure the shared objectives.

4. They provide a framework to solve the multiple 
elasticity strategy problem. 

5. Integrate transversal features such as privacy, 
security, energy-efficiency, reliability…
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Elastic strategy κ

Elastic strategy η

Elastic strategy θ

Elastic strategy ζ

Elastic strategy ε

Elastic strategy δ

Elastic strategy β

Elastic strategy γ

Elastic strategy α

Metric 
D

Metric 
A

Metric 
E

Metric 
B

Metric 
C

Metric 
F

SLO 8

SLO 9

SLO 5

SLO 6

SLO 7

Metric 
H

Metric 
G

SLO 2

SLO 3

SLO 4

SLO 1

Abstractio
n

Application
Busines
s

Infrastructure

Use case
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Elastic strategy κ

Elastic strategy η

Elastic strategy θ

Elastic strategy ζ

Elastic strategy ε

Elastic strategy α 

Elastic strategy β

Elastic strategy γ

Elastic strategy δ

Model 
in use

Inferences 
per second

Video 
Quality

Cloud 
usage

Successful 
inferences

Expected 
energy

Cloud 
cost

Cost

Quality

Overall 
state

Abstractio
n

Application
Busines
s

Infrastructure

Resources

Detected 
misbehaviors

Model 
retraining

Privacy policy

Operation 
time

Devices 
available

Light 
condition

Use case
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Approach towards AIF

• Exchange opinions to advance PhD
• Main resources for Active Inference [1-5]
• Verses whitepaper [1] as a key vision
• Active Inference for intelligent systems

24

[1] Friston et al.,Designing Ecosystems of Intelligence from First Principles, https://doi.org/10.48550/arXiv.2212.01354
[2] Friston, Life as we know it, https://doi.org/10.1098/rsif.2013.0475
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Preliminary Work

● Local Requirements assurance by 
employing BN and MB [6] →

“Static Bayesian Network Learning”

● Design Study for AIF agents in 
distributed systems [7]

25

Goal: Explain that the CC paper builds 
upon the two papers we wrote 
before, where we apply similar 
principles. This is the fusion of all that.

[6] Designing Reconfigurable Intelligent Systems with Markov Blankets, ICSOC 2023, https://doi.org/10.1007/978-3-031-48421-6_4
[7] Active Inference on the Edge: A Design Study, pending at IEEE PerconAI 2024, https://doi.org/10.48550/arXiv.2311.10607

https://doi.org/10.1007/978-3-031-48421-6_4
https://doi.org/10.48550/arXiv.2311.10607


Paper Introduction

● Core problem stems from CC architecture
● Impossible to centrally evaluate requirements
● Heterogeneity and context-dependence

● Requires components to operate decentralized
● Devices unaware of how to fulfill their SLOs
● Active Inference can provide this knowledge

26[8] Equilibrium in the Computing Continuum through Active Inference, pending at FGCS, https://doi.org/10.48550/arXiv.2311.16769

https://doi.org/10.48550/arXiv.2311.16769


Research Scope

Intersection between distributed service assurance and Active Inference: 

• Structural causal models
• Causality to tame large scale networks
• Revealing and managing dependencies

• Self-evidenced cellular structures 
• Evaluate continuously how to fulfill SLOs
• Based on empirical values (i.e., metrics)

• Homeostasis – Equilibrium

27

[3]

[3] Kirchhoff et al., The Markov blankets of life: autonomy, active inference and the FEP, https://doi.org/10.1098/rsif.2017.0792

https://doi.org/10.1098/rsif.2017.0792


Running Example

• Reflected in most of the architecture

• Use Case
Distributed video processing architecture where 
IoT streams are transformed on edge devices to 
preserve individual’s privacy. After privacy 
enforcement, distribute streams over cloud.

• Hierarchical network structure
IoT devices provide streams to edge devices;
streams processed locally at edge devices;
video stream properties are configurable

28



Collaborative Edge Intelligence Framework
 3 major contributions in interplay:

29



Collaborative Edge Intelligence Framework
 3 major contributions in interplay:
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1. Continuous model accuracy and local SLO fulfillment



Collaborative Edge Intelligence Framework
 3 major contributions in interplay:
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1. Continuous model accuracy and local SLO fulfillment
2. Federation and combination of models



Collaborative Edge Intelligence Framework
 3 major contributions in interplay:
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1. Continuous model accuracy and local SLO fulfillment
2. Federation and combination of models
3. Collaboration between cellular structures



Contribution Structure

1. Continuous model accuracy and local SLO fulfillment
a. Static BNL and Inference
b. Continuous BNL and Inference (AIF)

2. Federation and combination of models
3. Collaboration between cellular structures

33



1a – Static BNL and Inference

● Basic mechanism for assuring SLOs at individual devices
● Requires training data in upfront and is prone to data shifts
● Evaluates possible configurations through a 3-step method

34



1a – Static BNL and Inference (2)

35

❏ P(SLO < x) for all

variable combinations

❏ Find Bayes-optimal 

system configuration

❏ Causality filter [1,4]

❏ Identify variables that have an 

impact on SLO fulfillment

❏ Structure Learning 
Hill-Climb Search (HCS)
Dir. Acyclic Graph (DAG)

❏ Parameter Learning
Max. Likelihood Estimation
Conditional Prob. Table (CPT)

Bayesian Network Learning (BNL) Markov Blanket (MB) Selection Knowledge Extraction



1b – Continuous BNL and Inference

● AIF agent → Equilibrium-Oriented SLO Compliance (EOSC) model
● Agent uses SLOs as preferences during continuous adaptation
● BN trained incrementally from incoming observations
● Beliefs updated according to prediction errors
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1b – AIF Agent Behaviour
Determined by three factors:

● Pragmatic value (pv)
Summarizes QoE SLOs (e.g., resolution) 

● Risk assigned (ra)
Summarizes QoS SLOs (e.g., network limit)

pv & ra calculated as separate factors from MBs;
configurations rated according to SLO fulfillment;
interpolation between known configurations

● Information gain (ig)
Continued on the next slide
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1b – AIF Agent Behaviour (2)

● Information gain (ig)
○ Favors configurations that promise model improvement
○ Summarizes surprise for observations included in the MB
○ Hyperparameter (e) allows exploring designated areas

 AIF agent cycle:

1. Calculate surprise for current batch of observations 
2. Retrain structure (or parameters) depending on surprise
3. Calculate behavioral factor for empirically evaluated configs
4. Interpolate between known configurations in 2D (or 3D) space
5. Choose the highest-scoring (device) configuration

Agent gradually develops understanding how to ensure SLOs

38
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2 – Knowledge Exchange

Extend from single devices to the CC

Heterogeneity among the Edge
● Impedes simple transfer learning of models
● Low model accuracy → high surprise

● Requires a cluster leader (fog node or edge)
● EOSC models collected at a leader node
● Model selection according to hardware char.
● Merging models to provide tailor-fit one

Fast onboarding (= horizontal scaling) of devices

39



3 – Collaborative Scaling

Limited action scope of devices
● Individual devices restricted to local scope to resolve SLO violations 

● Leader node collecting environmental metrics (e.g., network congestion)
● Incorporated to causal model, contrasted against local SLO fulfillment (AIF)
● Emerging structures allows optimizing cluster-wide SLO fulfillment 

○ E.g., redistribute clients between impacted devices

40



Evaluation - Overview

• Use Case
Distributed video processing architecture where 
streams are transformed on edge devices to 
preserve privacy of individuals.

• Implementation
Prototype including video transformations and the 
collaborative edge intelligence framework.

• Evaluation Scope
Targeting each contribution with different aspects.

41[5] Sedlak, B., Murturi, I., Donta, P.K., Dustdar, S.: A Privacy Enforcing Framework for Transforming Data Streams on the Edge. IEEE Emerging Topics in Computing (2023)

[5]



Evaluation - Use Case
       
BNL comprises metrics from various sources (e.g., IoT client or edge device); 
Extended with target conditions (i.e., SLOs) to create the EOSC model:

Model training takes 11 (3) metrics  SLOs from model variables

      

42

Parameters allow configuring
a component’s environment



Evaluation - Implementation

Python prototype for which we provide:

● Github repository
● Docker container

Evaluation included a variety of edge devices:

Devices combined within a cluster and classified relatively to each other
43

https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-xavier-nx/

https://github.com/borissedlak/workload/tree/main/FGCS
https://hub.docker.com/repository/docker/basta55/workload/
https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-xavier-nx/


Evaluation - Aspects

We motivated, evaluated, and provided the results for 13 aspects:

A-1: Do MBs reduce the complexity of inference?
A-2: What is AIF’s operational overhead?
A-3: How long require AIF agents to ensure SLOs?
A-4-1: Are the produced Bayesian networks interpretable?
A-4-2: Is the behavior of AIF agents explainable?
A-5: What is the operational impact of including BNL in the AIF cycle?
A-6: Can changes in variable distribution be handled?
A-7: Can SLOs be modified during runtime?

K-1: What is the SLO fulfillment rate of transferred models?
K-2: Can knowledge transfer achieve any speedup?
K-3: Do tailored models have lover surprise compared to existing models?

S-1: How is the load distributed among resource-constrained devices?
S-2: Can intelligent CC structures optimize local SLO fulfillment?
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Evaluation - Aspects (Filtered)

We motivated, evaluated, and provided the results for 13 aspects:

A-1: Do MBs reduce the complexity of inference?
A-2: What is AIF’s operational overhead?
A-3: How long require AIF agents to ensure SLOs?
A-4-1: Are the produced Bayesian networks interpretable?
A-4-2: Is the behavior of AIF agents explainable?
A-5: What is the operational impact of including BNL in the AIF cycle?
A-6: Can changes in variable distribution be handled?
A-7: Can SLOs be modified during runtime?

K-1: What is the SLO fulfillment rate of transferred models?
K-2: Can knowledge transfer achieve any speedup?
K-3: Do tailored models have lover surprise compared to existing models?

S-1: How is the load distributed among resource-constrained devices?
S-2: Can intelligent CC structures optimize local SLO fulfillment?
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A-1: Do MBs reduce the complexity of inference?

• Setup
Modify the AIF agent to calculate behavior 
factors (i.e., surprise, etc) for a reduced 
number of SLOs with or without MB

• Result
Applying MBs reduced the median inference 
time of 4 SLOs from 197ms to 151ms

• Implication
MB provided a decreased system view

46



A-4-1: Are the produced Bayesian networks interpretable?

• Setup
Train the EOSC model from scratch 
and extract the BN after X rounds

• Result
Dependencies gradually revealed:

47      1 AIF round         3 AIF rounds                           5 AIF rounds                     10 AIF rounds

• Implication
AIF can be used to identify causal 
relations according to current and 
upcoming observations. Results are 
intuitively comprehensible.



A-4-2: Is the behavior of AIF agents explainable?

● Setup
Train the EOSC model from 
scratch and extract the agent’s 
behavioral factors after X rounds

● Result
Develops clear preferences

● Implication
Allows to empirically debug the 
behavior and fine-tune agent by 
adjusting hyperparameters

48

PV RA IG



K-3: Do tailored models have lover surprise compared to existing models?

● Setup
Federate EOSC models within the 
cluster, select and combine models for 
joining edge device; track retraining.

● Result
Tailor-made model reported the 
lowest surprise, although remaining 
models improved through retraining.

● Implication
Surprise can be decreased by choosing 
a (best-)fitting device model .
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S-1: How is load distributed among resource-constrained devices?

• Setup
Cluster-wide EOSC model that 
describes SLO fulfillment 
depending on device types and 
the number of processed streams. 
Infers optimal client assignment.

50

• Result
Cluster-wide SLO fulfillment was improved 
from 0.60 (E or R) to 0.81 (I)

• Implication
Leader node considered environmental factors 
to optimize a target variable (i.e., SLOs).



S-2: Can intelligent CC structures optimize local SLO fulfillment?
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● Setup
Clients distributed equally between 
comparable devices, introducing network 
congestion for one of them; rebalance load.

● Result
Cluster-wide SLO fulfillment (Σ) improved 
from 1.03 to 1.53.

● Implication
Was able to raise the scope of elasticity 
strategies, but requires sufficient data to 
model the relation of congestion → slo_rate.



Summary

● Impossible to centrally evaluate requirements 
○ Decentralize SLO fulfillment for CC components
○ Enforce requirements at the respective component
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Summary

● Impossible to centrally evaluate requirements 
○ Decentralize SLO fulfillment for CC components
○ Enforce requirements at the respective component

● Active Inference as key method for self-adaptation
○ Autonomous EOSC model training and updating
○ Fulfill SLOs through continuous reconfiguration

● Federation of models within higher-level components
○ Collaboration in the CC accelerate device onboarding
○ Assembled structures increased the action scope 
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Current Challenges and Outlook

● Pending comparison with other (ML) approaches
○ Evaluation of more complex use cases

● Composition of MBs for larger structures (DeepSLOs)
○ Constrain one MB depending on another’s SLOs
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Thankful for feedback and looking for potential collaborations
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