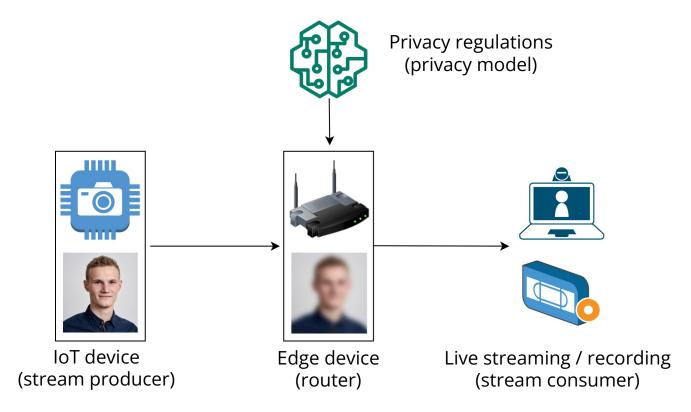
Specification and Operation of Privacy Models for Data Streams on the Edge

Boris Sedlak, Ilir Murturi, and Schahram Dustdar

Introduction - Problem Statement (1/2)

- **P1**: increasing number of IoT devices streaming sensor data, privacy enforcement happens in resource-rich cloud environments
- \rightarrow high latency and high chance of intercepting data
- ← processing at powerful edge devices, decrease network traffic


Introduction - Problem Statement (2/2)

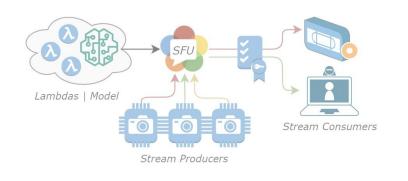
- **P2**: increasing number of (written) privacy regulations that must be respected by companies
- \rightarrow custom implementations for ensuring privacy
- ← standard description of privacy requirements, smart environment that enforces transformations based on this specifications

Introduction - Solution Attempt

Introduction - IoT vs Edge device

Assume privacy model, enforce directly on **IoT device**?

- ← No common environment, insufficient resources, restricted update mechanisms
- \rightarrow Powerful (interconnected) edge devices (e.g. Nvidia Jetson)


Specification and Operation of Privacy Models for Data Streams on the Edge

100 150 200 Index of Frame in Stream

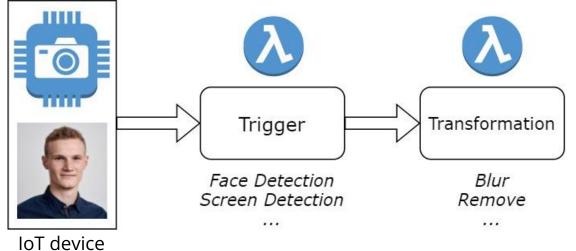
 $Face_Trigger: \{'prob': 0.85\} \rightarrow Blur_Area_Pixelate: \{'blocks': 5\}$

Framework

Prototype

40 06 Jds

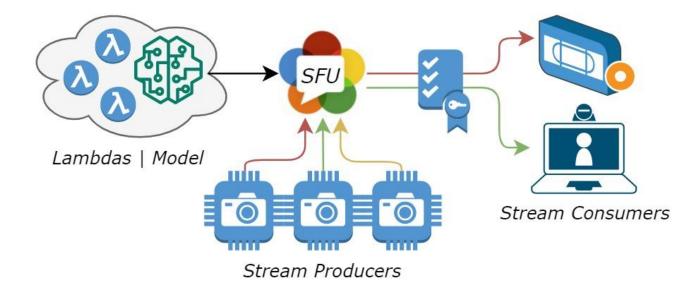
50



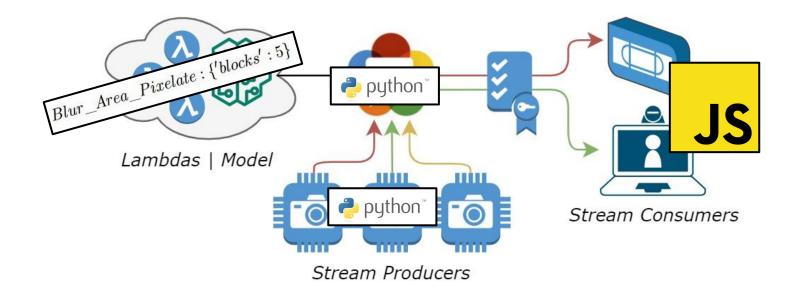
 Blur_Pixelat - Overall

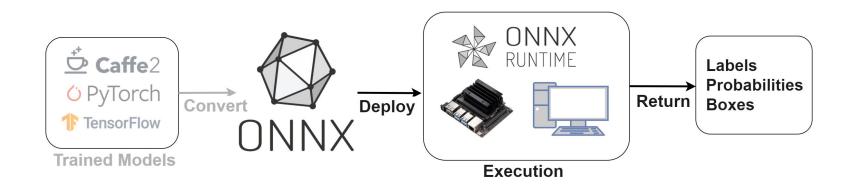
250 300

Abstract Concept - Model Specification



loT device (stream producer)


Abstract Concept - Architecture


Prototype - Video Streaming

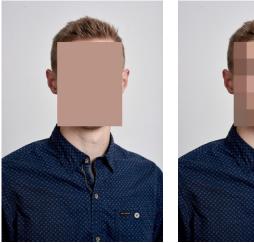
Prototype - Pattern Detection (1/2)

Prototype - Pattern Detection (2/2)

Name	Description
Face Detection 320	Lightweight face detection model for edge devices
Face Detection 640	Same as above, but images as 640x480 for better results
Age Classification	Returns age range (e.g. 25-32) and probability it matches
Gender Classification	Returns gender (male/female) and probability it matches
Car Plate Recognition	Detects Vietnamese car plates in images

ONNX models used for triggers

Prototype - Transformation Functions



Name	Description
Blur_Area_Pixelate	Blurs an area with a pixel grid of x [*] x rectangles
Fill_Area_Box	Replaces a frame area with a colored box
Max_Spec_Resize	Resizes a frame if it exceeds given boundaries

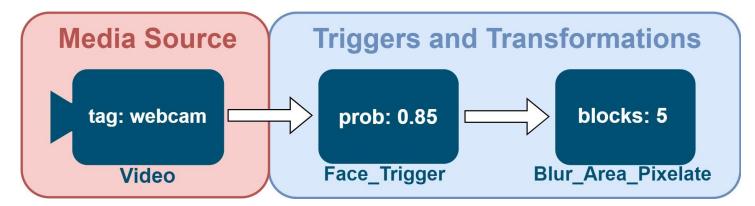
Transformation functions

Prototype - Transformation Example

blocks {1,5}

■ Blur_Area_Pixelate

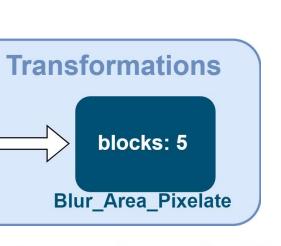
Description: Requires a video frame from a video source and a set of boxes as input parameters, returns the video frame with all boxes' contents blurred. Returns the unprocessed image if no box was specified.


Method Signature: frame, $\{\text{options}\} \rightarrow \text{frame}$

Parameters:

- blocks Int that describes a grid, where each cell is blurred on its own. So for a parameter value of 3 we divide the boxes' areas into 3 * 3 = 9 cells, where we calculate for each cell an average color in which the cell is filled. Must be a positive number, defaults to 1.
- boxes np-array of boxes that is required to point out the designated areas that should be transformed. Defaults to an empty set $[\emptyset]$, which indicates that no areas will be blurred.

Prototype - Privacy Model / Chain



 $video: \{'tag':'webcam'\} \rightarrow Face_Trigger: \{'prob': 0.85\} \rightarrow Blur_Area_Pixelate: \{'blocks': 5\}$

Prototype - Privacy Model / Chain

 $Blur_Area_Pixelate: \{'blocks': 5\}$

Conclusion

- Specification of privacy requirements
 Chains of triggers & transformations
- Underlying architecture for policy enforcement
 Not limited to a specific data type
- Prototype for video streaming
 - Decreased latency by moving resources to edge
 - Accelerated image processing on GPU

Conclusion - Future Work

- 1. Feature other data types in prototypes
- 2. Design live monitoring component
- 3. Evaluate security aspects

Thank you for your attention! Questions?