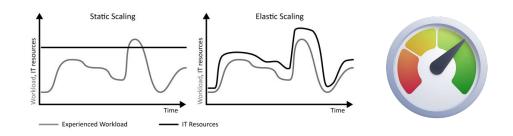


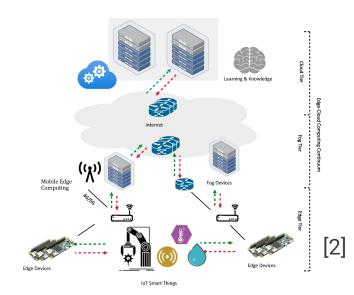
Designing Reconfigurable Intelligent Systems with Markov Blankets

TU Wien: Boris Sedlak, Victor Casamayor Pujol, Praveen Kumar Donta, Schahram Dustdar

WWW.TEADAL.EU

01/12/2023





Problem Statement - Environment

https://docs.dynatrace.com/docs/platform-modules/automations https://www.skylinesacademy.com/blog/2020/3/6/az-900-cloud-concepts-scalability-and-elasticity

- What elasticity used to be in the Cloud
- Service Level Objectives (**SLO**s)

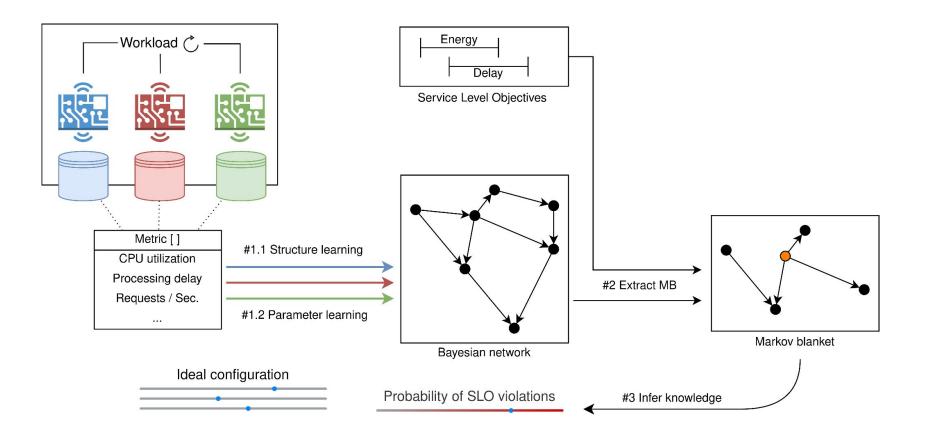
- Computing Continuum (**CC**) [1]
- What can elasticity mean for the Edge?

Dustdar, S., Pujol, V.C., Donta, P.K.: On Distributed Computing Continuum Systems. IEEE Transactions on Knowledge and Data Engineering (2023)
 Donta, P.K, Pujol, V.C., Murturi, I, Sedak, B, Dustdar, S., .: Exploring the Potential of Distributed Computing Continuum Systems; Computers (2023)

WWW.TEADAL.EU

How can you ensure **QoS**/QoE in such an environment?

Unknown environmental impact \rightarrow causality

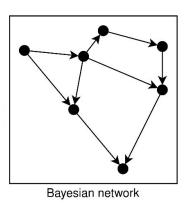

Overall composed complexity \rightarrow **scope**

Latency/Data towards cloud → **decentralized**

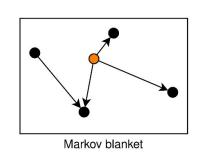
Dynamism of systems → **flexible**

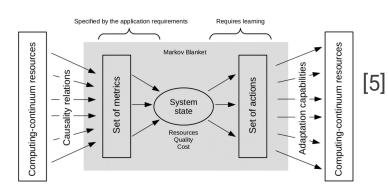
WWW.TEADAL.EU

Methodology - Overview



Methodology - Details


Bayesian Network Learning (BNL)


- Structure Learning Hill-Climb Search (HCS) Dir. Acyclic Graph (DAG)
- Parameter Learning

Max. Likelihood Estimation Conditional Prob. Table (CPT)

Markov Blanket (MB) Selection

Causality filter [3,4]
 Identify relevant variables

Probability of SLO violations

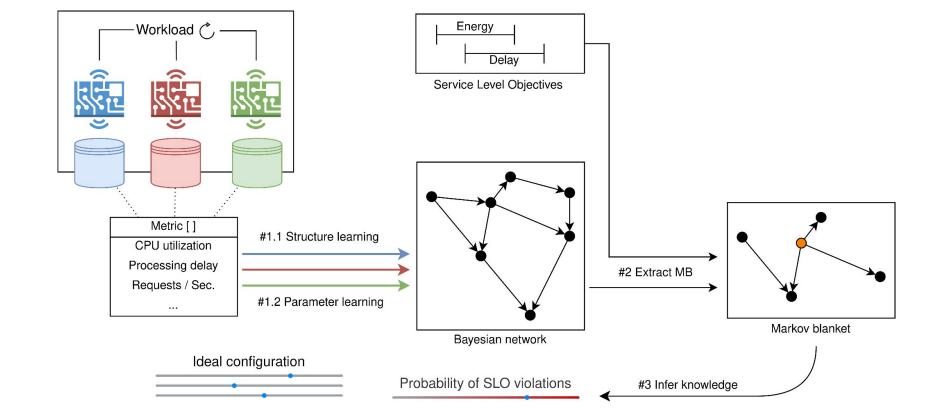
Knowledge Extraction

	Ideal configuration	
	•	
_	•	-

P(SLO < x) for all variable combinations
 Find Bayes-optimal system configuration

[3] Pearl, J.: Probabilistic reasoning in intelligent systems : networks of plausible inference. San Mateo, Calif. : Morgan Kaufmann (1988)
 [4] Friston, K.: Life as we know it. Journal of The Royal Society Interface (Sep 2013)
 [5] Casamayor Pujol, V., Raith, P., Dustdar, S.: Towards a new paradigm for managing computing continuum applications. IEEE CogMI (2021)

WWW.TEADAL.EU

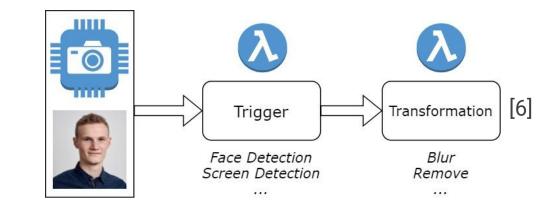

Methodology - Overview

pact → causality

mplexity \rightarrow **scope**

 \rightarrow decentralized

vstems → **flexible**


WWW.TEADAL.EU

Case Study - Overview

Distributed video processing on **Edge Workload**: Privacy-preserving transformation

11 metrics captured during processing**6 SLOs** that must be ensured

[6] Sedlak, B., Murturi, I., Donta, P.K., Dustdar, S.: A Privacy Enforcing Framework for Transforming Data Streams on the Edge. IEEE Transactions on Emerging Topics in Computing (2023)

WWW.TEADAL.EU

Case Study - Setup

Executed on NVIDIA Jetson Xavier NX
 GPU-Acceleration through NVIDIA CUDA
 Internal metrics (10) + consumption

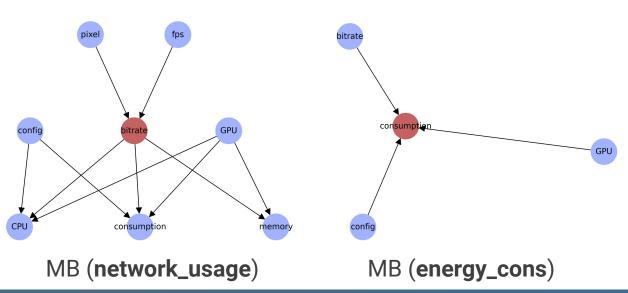
Name	Unit	Description	Param
delay	\mathbf{ms}	processing time per frame	No
CPU	%	utilization of the CPU	No
memory	%	utilization of the system memory	No
pixel	num	number of pixel contained in a frame	Yes
fps	num	number of frames received per second	Yes
bitrate	num	number of pixels transferred per second	No
distance	$\mathbf{p}\mathbf{x}$	relative distance of object between frames	No
transformed	T/F	if the model detected a pattern (i.e., face)	No
GPU	T/F	if the device employs a GPU	No
config	nominal	mode in which the device operates	Yes
consumption	W	energy pulled by the device	No

Table 1: Metrics captured during processing

https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-xavier-nx/ https://www.reichelt.com/de/en/wifi-outlet-switch-power-measurement-delock-11827-p262109.html?r=1

Case Study - Setup (2)

- **network_usage** Edge devices have limited network interfaces, and in some cases, limited network bandwidth. Since video streams are transferred over the network, *bitrate* is important to control network congestion.
 - **energy_cons** Edge devices are restricted in terms of resources and thus must economize or limit their energy *consumption* while ensuring compliance with the remaining system requirements (i.e., other SLOs).
 - within_time Video processing introduces a considerable streaming *delay*, which can lead to dropping frames and consequently poorer QoE. Hence, the stream's *fps* can be adjusted to limit/avoid dropping frames.
- **pixel_distance** Measures the quality of the object tracking capacity; we expect the tracked object not to jump, but to have a smooth trajectory. Hence, we define a range for the acceptable *distance*.
- **transf_success** Private or confidential information must not be disclosed; therefore, *transformed* should be maximized to increase the utility of the privacy model transformation.


Listing 1: Proposed SLOs for ensuring the service during processing

Case Study - Model Construction

2.5 hours processing \rightarrow 189,000 metric rows (Periodically switching *fps* and *pixel*)

Empiric Evaluation of Combinations 189,000 x 6 config $mode \rightarrow$ 756,000 rows BNL (= HCS and MLE) \rightarrow 30 s

Case Study - Device Configuration Inference

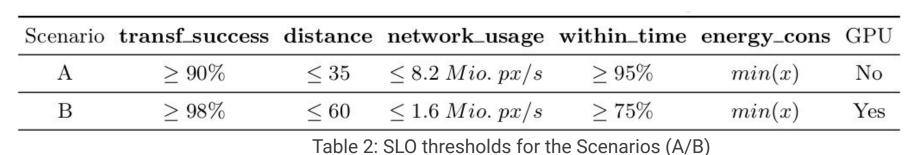
Parameter Space

- Find device configurations that (maximize) SLO fulfillment
- Configurations **must** include *fps*, *pixel*, *config* mode
 - Respectively 5 (fps) * 6 (pixel) * 3 (config) = 90 configurations
 - □ Have the format (240p : 20fps : 4C_20W)

Application on Prototype

- Inference for 5 SLOs and 90 configurations; 5 * 90 = 450 queries
- Takes **500** ms on Jetson Xavier NX
- SLO thresholds **parameterizable**; variables **configurable** (e.g., CPU)

Evaluation - Scenarios



Scenario A – Mobile Rendering

- Vehicle capturing street data
- Local transformation & rendering
- Live remote inspection

Scenario B – Factory Audit

- Multiple parallel streams provided
- Privacy-preservation (e.g. face, screen)

https://www.mosaic51.com/community/best-360-google-street-view-camera/ https://www.amazon.com/Wearable-Recorder-Headband-Streaming-Hands-Off/dp/B0BVPZ95K9

Results

From scenarios to device configurations

Infer device configurations (A/B)
 Extend with Naive, Random

Scenario	Source	Resolution	FPS	Mode	GPU
А	inferred naive random #1 random #2	$240 p \\ 360 p \\ 120 p \\ 720 p$	$20 \\ 30 \\ 16 \\ 12$	4C_15W 6C_20W 6C_20W 2C_10W	No
В	inferred naive random #1 random #2	240p 180p 360p 480p	$ \begin{array}{r} 16 \\ 26 \\ 20 \\ 30 \end{array} $	$2C_{10W}$ $4C_{15W}$ $2C_{15W}$ $6C_{20W}$	Yes

Table 3: Configurations evaluated for comparison

Bayesian Network Learning (BNL)

Measure SLO fulfillment 10m
 Infer reported no SLO violations

Scenario	Source	$transf_success$	$distance^5$	$network_usage$	within_time	energy_cons
	inferred	98%	15 (97%)	2.0 Mio.	100%	6.0W
	naive	100%	10 (100%)	6.9 Mio.	92%	8.0W
А	random $\#1$	4%	127(2%)	0.4 Mio.	100%	7.0W
	random $#2$	100%	28 (89%)	11 Mio.	100%	6.0W
	average	81%	73 (83%)	6.0 Mio.	81%	$7.1 \mathrm{W}$
	inferred	98%	18(98%)	1.6 Mio.	100%	6.0W
	naive	92%	11(99 %)	1.5 Mio.	100%	6.5W
	random $\#1$	99%	15(100%)	4.6 Mio.	100%	6.0W
В	random $#2$	100%	10 (100%)	12.3 Mio.	97%	7.5W
	average	81%	73~(86%)	6.0 Mio.	91%	6.7W

Table 4: SLO fulfillment for evaluated scenarios

- **CC** increases complexity of service provisioning
- Decentralized requirements (i.e., SLOs) assurance
- □ Causal relations **environment** → **SLO fulfillment**
- **BNL** (1), **MB** Selection (2), and **Inference** (3)
- Prototype with 11 metrics and 5 SLOs
- □ Inferred device **configurations** conformed with SLOs

TEADAL.EU

@TEADAL_eu

@TEADAL

ീന

TEADAL project is funded by the EU's Horizon Europe programme under Grant Agreement number 101070186