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— Formulate as POMDP, create interfaces for agents to
sense the environment and act on services/devices;
playground to compare performance of agent types
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+ preferred observations
(high quality and throughput)
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3 interventional parameters
(quality, model size, resource
allocation between services)

1 dependent parameter
(service throughput / rps)

1 constraint (cores < max)

+ preferred observations
(high quality and throughput)

— Optimize the requirements fulfillment through 4 different agents (DQN, 2x AIF, Regression)
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DQN agent work on heavily discretized space; requires
offline pretraining in custom gymnasium environment

[1] Heins, Millidge, Demekas, Klein, Friston, Couzin, Tschantz.: pymdp: A Python library for active inference in discrete state spaces (2022)
[2] Fountas, Z., Sajid, N., Mediano, P., Friston, K.: Deep active inference agents using monte-carlo methods (2020)
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DQN agent work on heavily discretized space; requires
offline pretraining in custom gymnasium environment

AIF agent uses pymdp [1] with equally discretized space;
35 policy options and 300k different state combination

DACI agent uses MCTS [2] methods for mapping high-
dimensional observations into compressed latent space

RASK agent explores dependencies in the processing
environment through continuous regression functions;
uses numerical solver for finding optimal policy

[1] Heins, Millidge, Demekas, Klein, Friston, Couzin, Tschantz.: pymdp: A Python library for active inference in discrete state spaces (2022)
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m Experimental Setup: Scenarios

Start processing services and one of the scaling agents;
let agent operate for 250s (i.e., sense and act in env.)

Capture reward (i.e., requirements fulfillment) and the
time that agents require to infer a scaling policy
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m Experimental Results

Runtime: DQN performs best
with runtimes < 100ms; highly
optimized on hardware; AlF
and DACI most computations
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m Experimental Results

Runtime: DQN performs best Reward: ASK superior, other
with runtimes < 100ms; highly agents similar. ASK operates in
optimized on hardware; AlF continuous space and makes
and DACI most computations fine-grained scaling actions
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m Conclusion

Motivation: Large-scale computing systems pose infinity E
of optimization problems; must explore behavior during ﬂ N M
el

runtime due changing variable distributions.
Solution: Model processing environment through POMDP
and train state transition models; compare four agents. ﬂ

DQON ASK (expl) ASK (inf) AlIF DACI

Benefit: Create stable autoscaling policies; embed AIF
agents into common use cases and allow comparison with
contemporary ML approaches (e.g., DQN).
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Future work: sophisticated exploration schemes for
continuous variables built on Gaussian processes.
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