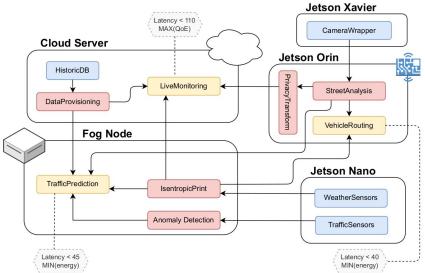
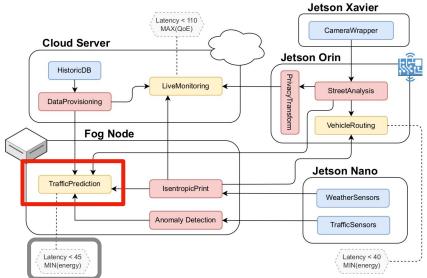
Diffusing High-level SLOs in Microservice Pipelines

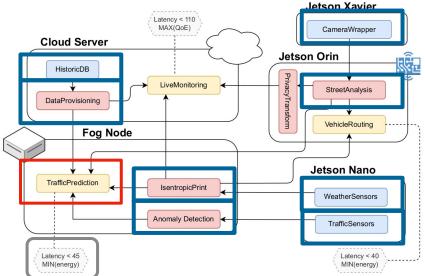
TU Wien: Boris Sedlak, Victor Casamayor Pujol, Praveen Kumar Donta, Schahram Dustdar



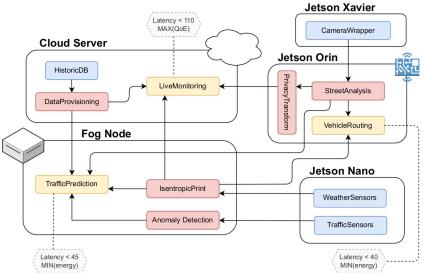
IEEE SOSE // 16.07.2024



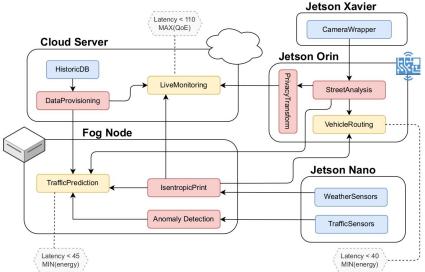
- Microservice pipelines distributed over computing infrastructure, i.e., Edge to Cloud, unclear implications of individual services to high-level requirements, i.e., SLOs
- Multiple tenant and vendors (= stakeholders) specify opposing SLOs, e.g., minimize energy and response time, which results in contradicting service configurations
- □ Stakeholders not aware what their SLO implies for lower level components and services, e.g., **energy** → cpu
- Requires multiple layers of SLOs that specify application requirements through **fine-grained** control mechanism, i.e., diffusing high-level SLOs into lower level SLOs



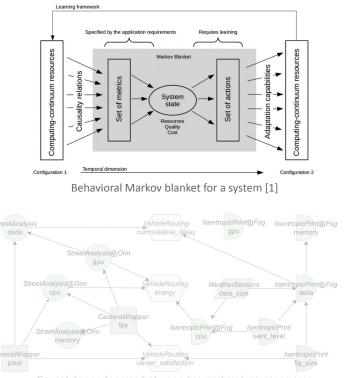
- Microservice pipelines distributed over computing infrastructure, i.e., Edge to Cloud, unclear implications of individual services to high-level requirements, i.e., SLOs
- Multiple tenant and vendors (= stakeholders) specify opposing SLOs, e.g., minimize energy and response time, which results in contradicting service configurations
- □ Stakeholders not aware what their SLO implies for lower level components and services, e.g., **energy** → cpu
- Requires multiple layers of SLOs that specify application requirements through **fine-grained** control mechanism, i.e., diffusing high-level SLOs into lower level SLOs



- Microservice pipelines distributed over computing infrastructure, i.e., Edge to Cloud, unclear implications of individual services to high-level requirements, i.e., SLOs
- Multiple tenant and vendors (= stakeholders) specify opposing SLOs, e.g., minimize energy and response time, which results in contradicting service configurations
- □ Stakeholders not aware what their SLO implies for lower level components and services, e.g., **energy** → cpu
- Requires multiple layers of SLOs that specify application requirements through **fine-grained** control mechanism, i.e., diffusing high-level SLOs into lower level SLOs



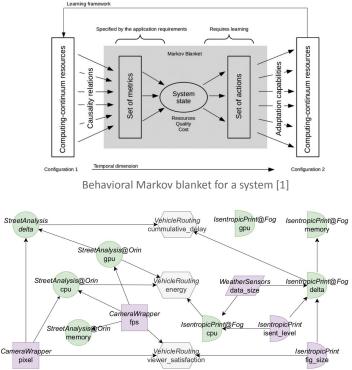
- Microservice pipelines distributed over computing infrastructure, i.e., Edge to Cloud, unclear implications of individual services to high-level requirements, i.e., SLOs
- Multiple tenant and vendors (= stakeholders) specify opposing SLOs, e.g., minimize energy and response time, which results in contradicting service configurations
- □ Stakeholders not aware what their SLO implies for lower level components and services, e.g., **energy** → cpu
- Requires multiple layers of SLOs that specify application requirements through **fine-grained** control mechanism, i.e., diffusing high-level SLOs into lower level SLOs



- Microservice pipelines distributed over computing infrastructure, i.e., Edge to Cloud, unclear implications of individual services to high-level requirements, i.e., SLOs
- Multiple tenant and vendors (= stakeholders) specify opposing SLOs, e.g., minimize energy and response time, which results in contradicting service configurations
- □ Stakeholders not aware what their SLO implies for lower level components and services, e.g., **energy** → cpu
- Requires multiple layers of SLOs that specify application requirements through **fine-grained** control mechanism, i.e., <u>diffusing high-level SLOs into lower level SLOs</u>

Model the **behavior** of a system in changing environments; focuses on variables that have an impact on taken actions

Causal dependencies between hierarchical microservices

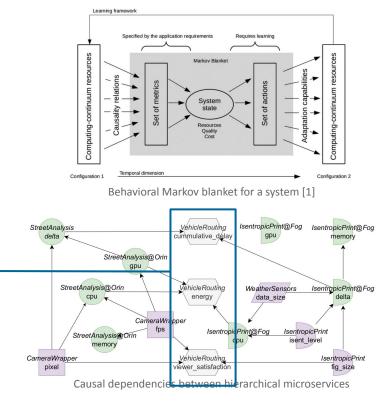


Model the **behavior** of a system in changing environments; focuses on variables that have an impact on taken actions

Note two fundamental properties of Bayesian Network (BN)

(1) Variables reflecting high-level SLO are **leaf node**; otherwise constraining childs; always has leaves

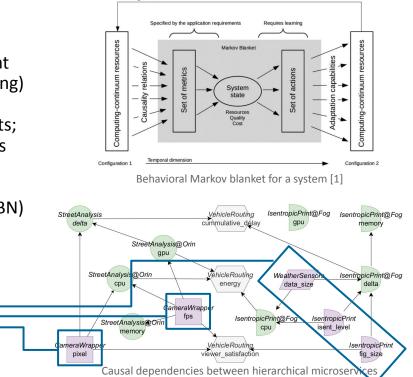
(2) Parameter variables always located at **root nodes**; conditional independent of all other nodes


Causal dependencies between hierarchical microservices

Model the **behavior** of a system in changing environments; focuses on variables that have an impact on taken actions

Note two fundamental properties of Bayesian Network (BN)

- (1) Variables reflecting high-level SLO are **leaf node**; otherwise constraining childs; always has leaves
- (2) Parameter variables always located at **root nodes**; conditional independent of all other nodes



Model the **behavior** of a system in changing environments; focuses on variables that have an impact on taken actions

Note two fundamental properties of Bayesian Network (BN)

- (1) Variables reflecting high-level SLO are **leaf node**; otherwise constraining childs; always has leaves
- (2) Parameter variables always located at **root nodes**; conditional independent of all other nodes

Learning framework

RQ-1) How can high-level SLOs be translated to lower-level objectives?

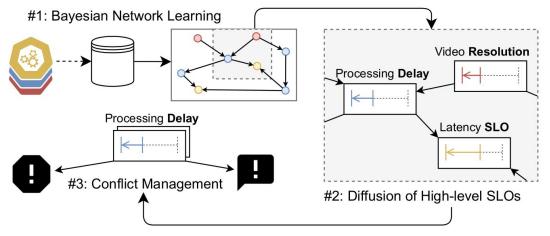
Fulfilling high-level SLOs requires equilibrium among **all** components, hence they which require **clear configurations** to achieve this

RQ-2) How restrictive should low-level SLOs be?

Predicting SLO behavior is not black-white, but **continuous**. What are desirable states for lower-level SLO and how to achieve them

RQ-3) Where do SLO conflicts occur and how can they be resolved?

Stakeholders cannot maintain a **reasonable** overview over multiple competing SLOs, e.g., energy vs. performance, how to resolve this



3-Step approach

#1 Extract BN as a probabilistic view into the service execution

#2 diffuse high-level SLOs into lower level ones and param. assignments

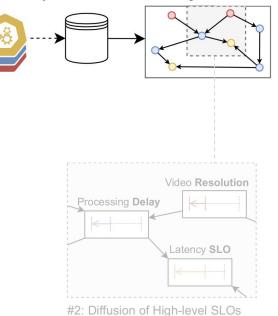
#3 identify conflicting variables and resolve them as far as possible

3-Step methodology to diffuse high-level SLOs in a microservice pipeline

#1 Bayesian Network Learning (BNL)

Extract **causal** dependencies between dependent services; training data collected centrally and used for BNL, must be captured in parallel or joined through **interface variables**

Renders a **composite graph** for a services tree starting from the consumer, i.e., restricts the number of variables per case


#2 Diffusion of High-level SLOs

Recursively traverse the **parents** of high-level SLOs and constraint states of lower-level variables and parameters; visiting variables multiple times constrains them further

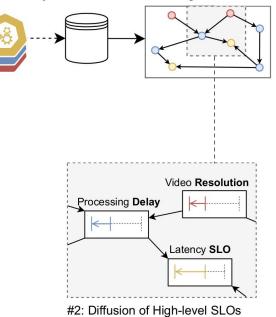
Evaluates each low-level state's probability to **satisfying** highlevel constraints; only considers a state iff $p > max(X) * \lambda$

X = list of all state's probabilities to fulfill SLOs; λ = acceptance range

#1 Bayesian Network Learning (BNL)

Extract **causal** dependencies between dependent services; training data collected centrally and used for BNL, must be captured in parallel or joined through **interface variables**

Renders a **composite graph** for a services tree starting from the consumer, i.e., restricts the number of variables per case


#2 Diffusion of High-level SLOs

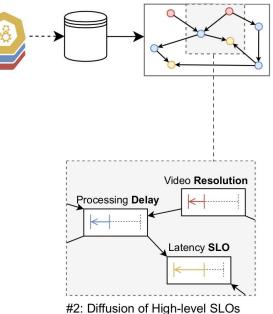
Recursively traverse the **parents** of high-level SLOs and constraint states of lower-level variables and parameters; visiting variables multiple times constrains them further

Evaluates each low-level state's probability to **satisfying** highlevel constraints; only considers a state iff $p > max(X) * \lambda$

X = list of all state's probabilities to fulfill SLOs; λ = acceptance range

#1 Bayesian Network Learning (BNL)

Extract **causal** dependencies between dependent services; training data collected centrally and used for BNL, must be captured in parallel or joined through **interface variables**


Renders a **composite graph** for a services tree starting from the consumer, i.e., restricts the number of variables per case

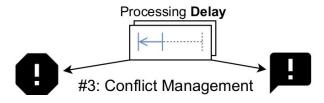
#2 Diffusion of High-level SLOs

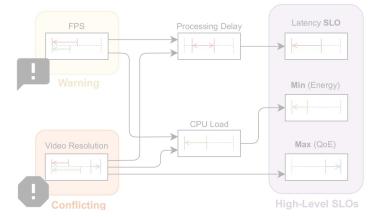
Recursively traverse the parents of high-level SLOs and						
constraint s		ples and parameters;				
visiting vari	Complexity grows with	trains them further				
Evaluates e level constr	the number of states	ability to satisfying high- ate iff <i>p > mαx(X) * λ</i>				

X = list of all state's probabilities to fulfill SLOs; λ = acceptance range

#3 Conflict Management

Identify **conflicting variables** and **resolve** them as far as possible; merge the inferred low-level SLOs and try to find an **intersection** among the assignments


$$INTER(L_v) = \bigcap_{i,j=1; i \neq j}^n L_i \cap L_j \neq \emptyset$$


Warning

issued in case that variables were visited and constrained multiple times, but it was possible to merge inferred SLOs

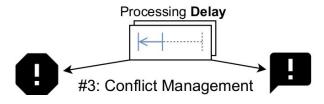
Conflict

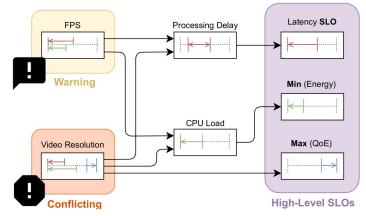
highlight to stakeholders which variables are conflicting and which high-level SLO are responsible, i.e., **Max** (QoE)

Detecting conflicting variables when diffusing high-level SLOs

#3 Conflict Management

Identify **conflicting variables** and **resolve** them as far as possible; merge the inferred low-level SLOs and try to find an **intersection** among the assignments

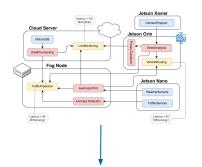

$$INTER(L_v) = \bigcap_{i,j=1; i \neq j}^n L_i \cap L_j \neq \emptyset$$


Warning

issued in case that variables were visited and constrained multiple times, but it was possible to merge inferred SLOs

Conflict

highlight to stakeholders which variables are conflicting and which high-level SLO are responsible, i.e., Max (QoE)


Detecting conflicting variables when diffusing high-level SLOs

Combination of 12 microservices **plugged together**; service implementations all collected in <u>GitHub</u> repository

Microservice pipelines consist of 4 producers, 5 workers, and 3 consumer services; deployed on **different hosts** and feature distinct numbers of **configuration parameters**

Services executed on the physical setup, provide all the metrics required for the 3-step methodology

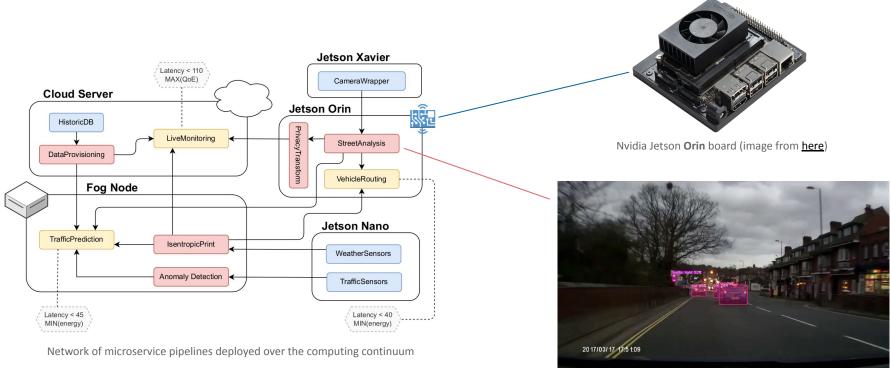


TABLE II: Microsevices available for evaluation

ID	type	param / var	host
TrafficSensors [28]	Producer	1/1	Xavier
<i>Historic</i> DB	Producer	2/2	Server
CameraWrapper 29	Producer	2/2	Nano
WeatherSensors 30	Producer	1 / 1	Xavier
AnomalyDetection [28]	Worker	0/5	Fog
HistoricProvision	Worker	2/7	Server
StreetAnalysis [31]	Worker	0/4	Orin
PrivacyTransform [29]	Worker	0/6	Orin
IsentropicPrint 30	Worker	2/6	Fog
TrafficPrediction	Consumer	0/2	Fog
VehicleRouting	Consumer	0/3	Orin
LiveMonitoring	Consumer	0/3	Server

https://github.com/borissedlak/deploymentOptimizer/tree/main/SOSE

CV Service with Yolov8 running on the produced videos

Given a set of high-level SLOs and a overarching BN Diffuse the SLOs to lower-level variables and parameters

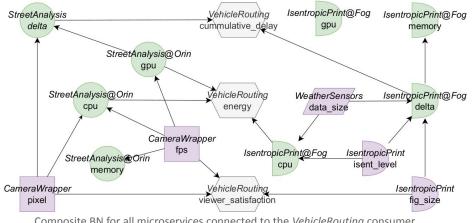
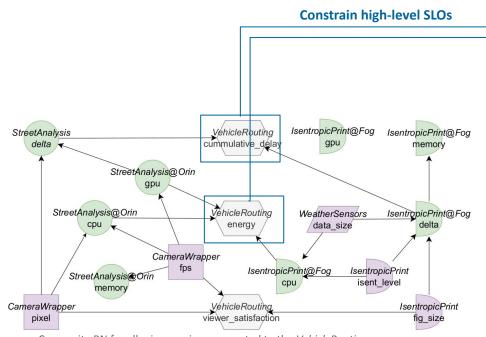



TABLE III: SLOs and parameters inferred for VehicleRouting

Microservice	Variable	States	SLO / Param
VehicleRouting	cumm_delay energy viewer_sat	$\leq 45 \text{ ms}$ $\leq 19 \text{ W}$	High-level
StreetAnalysis StreetAnalysis StreetAnalysis IsentropicPrint IsentropicPrint	delta cpu (Orin) gpu (Orin) delta cpu (Fog)	$ \leqslant 35 \text{ ms} \\ \leqslant 21 \% \\ \leqslant 40 \% \\ \leqslant 37 \text{ ms} \\ \leqslant 17 \% $	Low-level
CameraWrapper CameraWrapper IsentropicPrint IsentropicPrint WeatherSensors	pixel fps fig_size isent_level data_size	$= 480 \text{ p} = 15 \text{ f} \leqslant 50 \text{ p} \leqslant 200 \text{ k} \leqslant 30 \text{ pi}$	Parameter

Inferred low-level SLOs and parameter assignments for high-level SLOs

Composite BN for all microservices connected to the VehicleRouting consumer

Microservice	Variable	States	SLO / Param
VehicleRouting	cumm_delay energy viewer_sat	$\leq 45 \text{ ms}$ $\leq 19 \text{ W}$	High-level
StreetAnalysis StreetAnalysis StreetAnalysis IsentropicPrint IsentropicPrint	delta cpu (Orin) gpu (Orin) delta cpu (Fog)	$ \leqslant 35 \text{ ms} \\ \leqslant 21 \% \\ \leqslant 40 \% \\ \leqslant 37 \text{ ms} \\ \leqslant 17 \% $	Low-level
CameraWrapper CameraWrapper IsentropicPrint IsentropicPrint WeatherSensors	pixel fps fig_size isent_level data_size	$= 480 \text{ p} = 15 \text{ f} \leq 50 \text{ p} \leq 200 \text{ k} \leq 30 \text{ pi}$	Parameter

Inferred low-level SLOs and parameter assignments for high-level SLOs

			Microservice	Variable	States	SLO / Param
	Constrain low-level SLOs		VehicleRouting	cumm_delay energy viewer_sat	$\leq 45 \text{ ms}$ $\leq 19 \text{ W}$	High-level
			StreetAnalysis StreetAnalysis StreetAnalysis IsentropicPrint IsentropicPrint	delta cpu (Orin) gpu (Orin) delta cpu (Fog)	$ \leqslant 35 \text{ ms} \leqslant 21 \% \leqslant 40 \% \leqslant 37 \text{ ms} \leqslant 17 \% $	Low-level
treetAnalysis delta StreetAnalysis@Orin gpu			CameraWrapper CameraWrapper IsentropicPrint IsentropicPrint WeatherSensors	pixel fps fig_size isent_level data_size	$= 480 \text{ p} = 15 \text{ f} \leqslant 50 \text{ p} \leqslant 200 \text{ k} \leqslant 30 \text{ pi}$	Parameter
SireerAnarysisterOnin	tropicPrint@Fog IsentropicPrint@Fog	Infe	rred low-level SLO	s and paramet	er assignm	ents for high-lev
ameraWrapper VehicleRoutii	lsentropicPrint					

	Microservice	Variable	States	SLO / Param
Constrain low-level SLOs	VehicleRouting	cumm_delay energy viewer_sat	$\leq 45 \text{ ms}$ $\leq 19 \text{ W}$	High-level
why not chosen?	StreetAnalysis StreetAnalysis StreetAnalysis IsentropicPrint IsentropicPrint	delta cpu (Orin) gpu (Orin) delta cpu (Fog)		Low-level
treetAnalysis VehicleRouting IsentropicPrint@Fog IsentropicPrint@Fog delta cummulative_delay gpu streetAnalysis@Orin gpu	CameraWrapper CameraWrapper IsentropicPrint IsentropicPrint WeatherSensors	pixel fps fig_size isent_level data_size	$= 480 \text{ p} = 15 \text{ f} \leqslant 50 \text{ p} \leqslant 200 \text{ k} \leqslant 30 \text{ pi}$	Parameter
cpu energy data_size delta CarneraWrapper StreetAnalysis@Orin memory lsentropicPrint@Fog IsentropicPrint cpu isent_level	rred low-level SLO	s and paramet	er assignmo	ents for high-leve
meraWrapper VéhicleRouting IsentropicPrint				

-	Microservice	Variable	States	SLO / Param
	VehicleRouting	cumm_delay energy viewer_sat	$\leq 45 \text{ ms}$ $\leq 19 \text{ W}$	High-level
	StreetAnalysis StreetAnalysis StreetAnalysis IsentropicPrint IsentropicPrint	delta cpu (Orin) gpu (Orin) delta cpu (Fog)	$ \leqslant 35 \text{ ms} \leqslant 21 \% \leqslant 40 \% \leqslant 37 \text{ ms} \leqslant 17 \% $	Low-level
	CameraWrapper CameraWrapper IsentropicPrint IsentropicPrint WeatherSensors	pixel fps fig_size isent_level data_size	$= 480 \text{ p} = 15 \text{ f} \leq 50 \text{ p} \leq 200 \text{ k} \leq 30 \text{ pi}$	Parameter
StreetAnalysis@Orin cpu CameraWrapper StreetAnalysis@Oin reps CameraWrapper VehicleRouting CameraWrapper VehicleRouting CameraWrapper pixel Composite BN for all microservices connected to the VehicleRouting consumer	ed low-level SLO	s and paramet	er assignme	ents for high-level SLO

Setup the evaluation environment

- 1) **Deploy** microservices over the architecture
- 2) Set **parameter** according inferred thresholds
- 3) Measure the actual SLO fulfillment
- 4) Evaluate **alternative** param. configurations
- 5) **Compare** results and find min / max

What can we report?

- Inferred configuration close to optimal
- Discrepancy occur either due to flexible
 boundaries, or conflicts between SLOs

Microservice	Variable	States	SLO / Param
 VehicleRouting	cumm_delay energy viewer_sat	$\leq 45 \text{ ms}$ $\leq 19 \text{ W}$	High-level
StreetAnalysis StreetAnalysis StreetAnalysis IsentropicPrint IsentropicPrint	delta cpu (Orin) gpu (Orin) delta cpu (Fog)	$ \leqslant 35 \text{ ms} \\ \leqslant 21 \% \\ \leqslant 40 \% \\ \leqslant 37 \text{ ms} \\ \leqslant 17 \% $	Low-level
CameraWrapper CameraWrapper IsentropicPrint IsentropicPrint WeatherSensors	pixel fps fig_size isent_level data_size	$= 480 \text{ p} = 15 \text{ f} \leq 50 \text{ p} \leq 200 \text{ k} \leq 30 \text{ pi}$	Parameter

TABLE IV: High-level SLO fulfillment of inferred and alternative assignment for all three evaluated applications

Microservice	High-level SLO	% Min	% Fulfill	% Max
VehicleRouting	cumm_delay ≤ 45 min(energy)	0.00 0.53	0.94 0.99	$\begin{array}{c} 1.00\\ 1.00\end{array}$
TrafficPrediction	cumm_delay ≤ 40	0.00	0.83	0.90
LiveMonitoring	cumm_delay ≤ 110 max(viewer_sat.)	0.13 0.00	0.93 1.00	1.00 1.00

Setup the evaluation environment

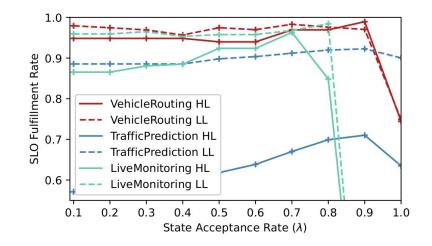
- 1) **Deploy** microservices over the architecture
- 2) Set **parameter** according inferred thresholds
- 3) Measure the actual SLO fulfillment
- 4) Evaluate **alternative** param. configurations
- 5) **Compare** results and find min / max

What can we report?

- Inferred configuration close to optimal
- Discrepancy occur either due to flexible boundaries, or conflicts between SLOs

Microservice	Variable	States	SLO / Param
 VehicleRouting	cumm_delay energy viewer_sat	$\leq 45 \text{ ms}$ $\leq 19 \text{ W}$	High-level
StreetAnalysis StreetAnalysis StreetAnalysis IsentropicPrint IsentropicPrint	delta cpu (Orin) gpu (Orin) delta cpu (Fog)	$ \leqslant 35 \text{ ms} \\ \leqslant 21 \% \\ \leqslant 40 \% \\ \leqslant 37 \text{ ms} \\ \leqslant 17 \% $	Low-level
CameraWrapper CameraWrapper IsentropicPrint IsentropicPrint WeatherSensors	pixel fps fig_size isent_level data_size	$= 480 \text{ p} = 15 \text{ f} \leq 50 \text{ p} \leq 200 \text{ k} \leq 30 \text{ pi}$	Parameter

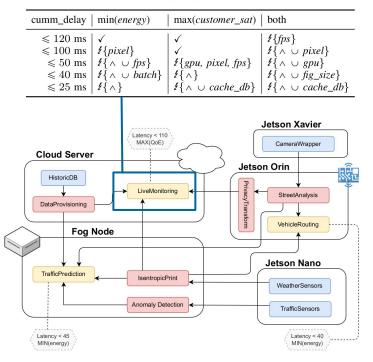
TABLE IV: High-level SLO fulfillment of inferred and alternative assignment for all three evaluated applications


	Microservice	High-level SLO	% Min	% Fulfill	% Max
•	VehicleRouting	cumm_delay ≤ 45 min(energy)	0.00 0.53	0.94 0.99	$\begin{array}{c} 1.00\\ 1.00\end{array}$
	TrafficPrediction	cumm_delay $\leqslant 40$	0.00	0.83	0.90
	LiveMonitoring	cumm_delay ≤ 110 max(viewer_sat.)	0.13 0.00	0.93 1.00	1.00 1.00

When **constraining** lower-level states of variables, how **restrictive** should lower-level boundaries be?

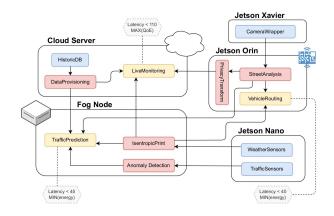
Vary acceptance rate (λ) from [0.1,1.0]; means very loose or restrictive for lower-level SLOs and params; for 3 consumers evaluate SLOs for microservices

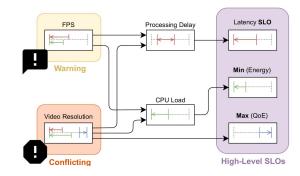
Lower acceptance rate **improves** SLO fulfillment; when acceptance rate **too narrow**, not possible anymore to find satisfying parameter assignments


Results: RQ-3 Conflicts and Resolution

Conflicts between high-level SLOs appear at the lower-level SLOs and parameter assignments

Choose microservices around *LiveMonitoring* and specify increasingly tight performance boundary, extended with SLOs for opposing targets, i.e., **min**(energy) and/or **max**(satisfact.)


Wide boundaries (first row) allow to infer parameter assignments for most cases, but tighter constraints results in most variables finding no intersection


TABLE V: Conflicts among high-level SLOs for LiveMonitor

- Stakeholders unaware of implications of high-level SLOs to lower-level components and parameters and whether specifies SLOs are conflicting
- Requires mechanisms to diffuse high-level SLOs to composite microservices pipelines
- Diffusion traverses BN to constrain lower-level variables to states that fulfill higher-level goals
- Evaluation for microservice networks; high-level goals were diffused to service parameters; could highlight conflicting SLOs to stakeholders

Let's discuss!

Please come forward with any **question** you have

