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Computing Continuum (CC) as a composition of multiple 
processing tiers that stretch from IoT and edge computing, 
over Fog resources, to distant Cloud centers

Combines the benefits of all its tiers, i.e., low-latency and 
privacy-protecting computation from Edge, high availability 
and virtually unlimited processing resources from Cloud

Smart Cities are a common instance of distributed systems, 
where interconnected services (e.g., traffic surveillance or road 
surveillance) collaborate based on collected sensor data

Example of a Computing Continuum architecture [1]
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[1] P. Donta, I. Murturi, V. Casamayor, B. Sedlak, and S. Dustdar; Exploring the Potential of Distributed Computing Continuum Systems (2023)
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[2] Ricciardi et al., Saving Energy in Data Center Infrastructures (2011)

Elasticity allocates the right amount of resources [2]

Autonomous Orchestration of Computing Continuum Systems through Active Inference – Boris Sedlak

Service Level Objectives (SLOs) specify requirements that 
must be ensured throughout operation (e.g., latency < t). 
Narrow scope on generic performance indicators

Elasticity Strategies scale a system according to current 
demand; e.g., if performance is insufficient, allocate more 
resources. However, what if this does not fulfill SLOs?

Service Level Agreements (SLAs) as binding agreement 
between service provider and consumer. However, very 
limited support in resource-restricted environments
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Naive assumption 
Benchmark a service on an Edge device; performance 
looks fine → deploy it; if we fail our SLOs (e.g., high 
demand), start a fresh service instance nearby

Rigid elasticity models 
Resources are scarce at the Edge and its often not 
possible to offload computation or scale services 
horizontally/vertically; vulnerable during runtime

Complex service interactions
Elasticity strategies focus on local service state and 
don’t consider impact on dependent services; actions 
by one service jeopardize SLO fulfillment of others

Autonomous Orchestration of Computing Continuum Systems through Active Inference – Boris Sedlak

Naive autoscaling on a set of homogeneous devices
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RQ.2 Flexible orchestration
How to quantify the potential impact of 
elasticity strategies and choose between 
them according to the current state

RQ.3 Composable models
How to analyze dependencies between 
services and use these insights for 
optimizing global SLO fulfillment

Naive autoscaling on a set of homogeneous devices
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Inaccuracy of one-shot training
Train a model (of state transition probabilities) to infer 
optimal elasticity strategy; however, requires lots of 
training data; also, variable drifts perturb the model

ML algorithms as blackbox 
DNN models are difficult to debug; cannot empirically 
verify why an elasticity strategy was used; leading to 
low trust in ML-based orchestration mechanisms

Autonomous Orchestration of Computing Continuum Systems through Active Inference – Boris Sedlak
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RQ.1 Continuous Learning
How to continuously adjust the model 
according to new observations without 
obstructing the inference;

extracting causal patterns within data



II – Overview of Contributions

Distributed processing 

– Distributed CC infrastructure 
composed of various device 
types at different locations

– Sensor data continuously 
streamed from IoT devices to 
different processing services



Service interpretation 

– Monitor processing across 
CC by collecting metrics; eval. 
real-time SLO fulfillment

– Train a model (i.e., BN) for 
predicting SLO fulfillment of 
individual services in different 
deployment configurations [7]

– Retrain model according to 
SLO prediction accuracy; slows 
down as model improves [9]

II – Overview of Contributions (C1)

[7] Sedlak et al., Designing Reconfigurable Intelligent Systems with Markov Blankets, at ICSOC 2023
[9] Sedlak et al., SLO-Aware Task Offloading Within Collaborative Vehicle Platoons, at ICSOC 2024



Service adaptation 

– Optimize local SLO fulfillment 
by reconfiguring processing 
services; choose between avail. 
elasticity strategies [5]

– Escape local optima through 
continuous exploration; check 
poss. model improvement [12]

– Decisions can be empirically 
verified and interpreted; useful 
for non-technical explanation

II – Overview of Contributions (C2)

[5] Sedlak et al., From Metrics to Multidimensional Elasticity Strategies, at IEEE Services EDGE 2023
[12] Sedlak et al., Active Inference on the Edge: A Design Study, at PerconAI 2024



Service collaboration

– Compose individual models 
to overarching representation; 
quantify service dependencies 
and impact on hardware [4]

– Collaborative orchestration 
considers service relations to 
optimize global SLO fulfillment

– Exchanging and merging BNs 
between services to speed up 
the onboarding of new service 
types or devices types [13]

II – Overview of
Contributions (C3)

[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Service EDGE 2024
[13] Sedlak et al., Equilibrium in the Computing Continuum through Active Inference, at Elsevier FGCS, 2024



III – Methodologies Overview
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Central methodologies
– How to quantify dependencies between systems?
– How to align a CC system towards a high-level SLO?

Refined methodologies
– How to ensure the accuracy of service models?
– How to debug the behavior of scaling agents?



III – Markov Blanket (MB)
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Interactions between systems (e.g., human in world) can be 
expressed through MBs – fulfill Markov property; allow 
modeling reactive behavioral models for elasticity

Creates formal boundary between a system and external 
states – limits scope of variables that determine internal 
state; discard remaining information to reduce dimension

Provides clear interfaces for sensory and action states; 
policy (e.g., scaling) as a mapping between these states

[3] Dustdar et al., On Distributed Computing Continuum Systems (2023)
[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services Edge 2024

Behavioral Markov blanket of a system [3]

Action-perception cycle between multiple entities [4]
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III – SLOs and Behavioral Models
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MB: Expresses how to evaluate a composite SLO and 
how to react according to the current device context

Behavioral model
Internal state (●) evaluates objectives and how these 
relate to external sensory inputs (●); can interact with 
the world through action, i.e., elasticity strategies (●), 
which are influenced by contextual factors (●) 

[5] Sedlak et al., Controlling Data Gravity and Data Friction: From Metrics to Multidimensional Elasticity Strategies, at IEEE Service EDGE 2023

Example of a behavioral model for data gravity [5]

Autonomous Orchestration of Computing Continuum Systems through Active Inference – Boris Sedlak
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Commonly addressed use cases revolve around continuous stream processing; in case time-critical 
adaptations are required, this poses a higher need for sophisticated adaptation mechanisms.

     Video Processing (Yolo V8)                      Mobile Mapping (Lidar)                       QR Scanner (OpenCV)                      

[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)

Creating a mobile map from binaries using Lidar [6]  QR code scanning in a video using OpenCV [6] Object detection in a video stream using Yolo [6]
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Abstract representation of a monitored stream processing service [6]

[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)
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Commonly addressed use cases revolve around continuous stream processing; in case time-critical 
adaptations are required, this poses a higher need for sophisticated adaptation mechanisms.
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Abstract representation of a monitored stream processing service [6] Example of processing metrics as tabular data [6]

[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)



III – Multi-dimensional Elasticity 
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Target: use processing metrics and properties to train 
a generative model that describes the process; create 
an interpretable representation of service behavior; 
orchestrate service optimally within current context

Resulting model contains:
 

❏ Target objectives (i.e., SLOs)
❏ Influential system factors
❏ Available elasticity strategies

3-Step basic methodology for providing this model 
through (1) Bayesian Network Learning (BNL), (2) 
Markov Blanket (MB) extraction, and (3) Inference.

[7] Sedlak et al., Designing Reconfigurable Intelligent Systems with Markov Blankets, at ICSOC 2023

[7]

Jetson Xavier [7]
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❏ Conditional Inference
Estimate impact of different 
deployment configuration

❏ Optimize SLOs
Adjust processing services 
according to optimal policy

❏ Causality filter
Extract subset of variables
that impact SLO fulfillment

❏ Behavioral MB
MB now contains contextual 
factors & elasticity strategies

❏ Structure Learning 
Various algorithms (e.g., HCS)
Directed Acyclic Graph (DAG)

❏ Parameter Learning
Various algorithms (e.g., MLE)
Conditional Prob. Table (CPT)

Bayesian Network Learning Markov Blanket Selection Knowledge Extraction

Autonomous Orchestration of Computing Continuum Systems through Active Inference – Boris Sedlak

III – Multi-dimensional Elasticity (cont.) 
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[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services EDGE 2024
[8] Sedlak et al., Diffusing High-level SLO in Microservice Pipelines, at IEEE SOSE 2024
[9] Sedlak et al., SLO-Aware Task Offloading Within Collaborative Vehicle Platoons, at ICSOC 2024

Transitive Requirements [4]
SLOs posed by consumers determine the service quality
that each “link” has to provide; compose MBs of dependent 
services to find implications and optimize deployment

Spanning CC with SLOs [8]
Microservice architectures composed of various services 
with SLOs for user-facing layer, e.g., latency or quality; infer 
lower-level SLOs and parameters for influential services

SLO-Aware Offloading [9]
Offloading a task to a resource-restricted device jeopardizes 
SLO fulfillment of existing services; estimate the implication 
to global SLO fulfillment to find suitable device hosts

Optimizing the deployment of microservice pipelines 
according to the SLOs posed for each service [4]

Autonomous Orchestration of Computing Continuum Systems through Active Inference – Boris Sedlak

III – Applying our Approach
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Transitive Requirements [4]
SLOs by stream consumers determine the service quality
that each “link” has to provide; compose MBs of dependent 
services to find implications and optimize deployment

Spanning CC with SLOs [8]
Microservice architectures composed of various services 
with SLOs for user-facing layer, e.g., latency or quality; infer 
lower-level SLOs and parameters for influential services

SLO-Aware Offloading [9]
Offloading a task to a resource-restricted device jeopardizes 
SLO fulfillment of existing services; estimate the implication 
to global SLO fulfillment to find suitable device hosts

Constraining a CC system by diffusing high-level SLOs 
to lower-level SLOs; highlights potential conflicts  [8]
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Known Shortcomings
(1) BNL requires large amounts of training data upfront;
(2) if discrete, must visit all possible states (e.g., scaling actions);
(3) over time, models get distorted due to variable drifts

Active Inference
Concept from neuroscience developed by Friston et al. [10,11]; 
allows agents to interact with their environment by learning the 
underlying generative models to persist over time

Action-perception cycle in 
Active Inference [11]

[10] Parr et al., Active Inference: The Free Energy Principle in Mind, Brain, and Behavior (2022)
[11] Friston et al., Designing ecosystems of intelligence from first principles (2024)
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Mapping between neuroscience and distributed computing 
systems [6,12,13]; understanding processing requirements 
(i.e., SLOs) as a form of homeostasis, e.g., cell temperature

Create autonomous components that identify how to ensure 
requirements and resolve them independently, clear 
modelling between higher-level and low-level components

Simplify service orchestration in large-scale distributed 
systems; decentralized decision-making of individual 
components avoids transferring service states to the Cloud 

[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)
[12] Sedlak et al., Active Inference on the Edge: A Design Study, at PerconAI 2024
[13] Sedlak et al., Equilibrium in the Computing Continuum through Active Inference, Elsevier FGCS (2024)

Ensure internal requirements [13]

Autonomous Orchestration of Computing Continuum Systems through Active Inference – Boris Sedlak



Approach
(1) Specify ideal runtime 
behavior through SLOs

(2) AIF agents monitor their 
environment & collect metrics

(3) Perception phase predicts 
expected SLO fulfillment and 
adjusts the generative model

(4) Action phase orchestrates 
the processing environment to 
optimize both SLOs and model 

Action and perception cycles performed by the AIF agent to create an accurate model and shape the world [6]

Autonomous Orchestration of Computing Continuum Systems through Active Inference – Boris Sedlak

[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)

III – Active Inference Architecture
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III – Active Inference Architecture (cont.)

[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services EDGE 2024
[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)

Interpretable behavior [6]
– Empirically verify variable relations in the BNs, e.g., 
increasing quality (pixel) leads to high energy usage; 
adjust parameters (i.e., pixel & fps) according to SLOs

– Quantified preferences of the agent: (1) expected 
SLO fulfillment or (2) potential model improvement; 
determine the behavior of the scaling agent 

Continuous composition [4]
– Gradually create increasingly accurate models for 
individual processing services; continuously compose 
to estimate the impact they have on each other

34
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III – Active Inference Architecture (cont.)
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[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services EDGE 2024
[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)



IoT & Edge enable large-scale distributed services 
that optimize our daily routines; CC as underlying 
infrastructure for supporting these services

Processing SLOs must be continuously ensured to 
guarantee safe and satisfactory service operation; 
however, resource limitations and heterogeneity of 
resources complicate service orchestration

Missing flexible orchestration solutions that choose 
actions according to current context; policy adjusted 
continuously according to runtime dynamics

IV – Summary
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Contemporary Challenges
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Monitor processing services closely, analyze their 
behavior, and infer optimal elasticity strategy; train 
a MB that combines all these factors in one model

Dynamically optimize SLOs fulfillment for a network 
of processing services and heterogeneous devices; 
orchestrate services (i.e., placement, configuration, 
replication, etc) according to current context

Active Inference as a natural fit to train behavioral 
MBs and keep them accurate; balance continuously 
between ensuring SLOs and improving the model

Contributions & Results


