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Introduction

Large-scale distributed systems can be composed of multiple components and
computing tiers, all of which have unique contributions to the system’s high-level
objectives. Consider, for instance, that videos captured by surveillance cameras
can be processed on nearby devices and then streamed over the internet. To
ensure the system’s functionality, stakeholders describe each tier’s expected be-
havior through Service Level Objectives (SLOs), e.g., maintaining processing la-
tency under a certain boundary. Evaluating these SLOs requires a set of metrics
(i.e., sensory observations), which are commonly collected at one central system
location; given this data, it can then be calculated to what degree SLOs were
fulfilled. However, this requires transferring massive amounts of data; further,
the latency for detecting and resolving SLO violations is high. The human body,
as an example of a complex system, would collapse from the overhead of evalu-
ating each cell’s requirements centrally (i.e., in the brain); hence, requirements
assurance must be decentralized to the respective system components.

Given that its SLOs are violated, intelligent components should detect and
resolve this autonomously by interacting with their environment. Understand-
ing how to adapt a system requires in-depth knowledge, which can be provided
through Machine Learning (ML) techniques. In particular, this can involve ex-
tracting causal relationships between components. However, training such mod-
els requires large amounts of data upfront, which are also subject to variable
shifts over time. This promotes the usage of Active Inference (AIF) for two rea-
sons: (1) AIF provides continuous model accuracy while creating world models
without prior assumptions, and (2) AIF agents aim to persist over time, thus
they can be used to modify the system according to expected SLO fulfillment and
model improvement. Within our most recent works [IJ2J3] we addressed these
matters; the following presents a condensed version of our contributions.

Methodology

Figure 1| shows how individual system components gradually develop a causal
understanding of how to ensure their SLO. For this, consider a video process-
ing workload (right); during the execution, metrics are extracted as part of the
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processing environment. In parallel, an AIF agent predicts whether it expects
SLOs (e.g., latency < t) to be fulfilled under the given environment (left); then,
the agent compares the prediction with the actual observations and updates its
beliefs according to the surprise, i.e., minimizing the free energy. For the agent,
this means updating its underlying causal graph and the encoded conditional
probabilities. Afterward, the agent compares the probability of SLO violations
under different environmental states and suggests changes to the processing envi-
ronment, e.g., adapting the video streaming parameters. To narrow down which
variables have a direct causal impact on SLO fulfillment, we extract the Markov
blanket (MB) around SLO variables; consider for this Figure given an SLO
that aims to cap latency (green), adjusting its parent variables (blue) directly
affects latency, while the remaining variables (grey) can be disregarded.

In this example, an AIF agent executed at the processing device (see Fig-
ure [1)) might use its local scope to adjust the camera’s video resolution (pizel),
whereas offloading streams between agents would require a higher-level orches-
trator to communicate between agents. This is achieved through collaboration
between individual components, which raises the system-wide level of intelli-
gence. To accelerate this, agents exchange their generative models according
to the relative differences between their processing environments. As lower-level
tiers get spanned with intelligent components, higher-level tiers can rely on their
correct function when they construct services on top of them. Such mechanisms
are also applied by the human body, which assembles higher-level components
(e.g., muscles or organs) from smaller cellular structures; thus, the equilibrium
within each cell contributes its part to the system’s global objectives.

Evaluation

The presented framework was implementecﬂand evaluated for the given use case,
in which a distributed system is responsible for ensuring service-related SLOs
within a distributed video streaming architecture. The evaluation included a
total number of twelve aspects, such as the number of training rounds to converge
to satisfying SLO fulfillment or the extent to which an MB can decrease the
complexity of inference. Figure 2b] depicts the SLO fulfillment based on how
an AIF agent adapts its environment; within its local scope, the agent could
adjust the pizel and frames per second (fps) of the video stream. Whenever the
ATF agent decided to switch to another configuration (blue dots), this showed
a decisive impact on the SLO fulfillment; in total, it required 5 reconfigurations
and 16 respective AIF iterations for the function to converge.

Another important property of the solution is that the causal structures
were rationally explainable, which improves trustworthiness. As in human inter-
action, the possibility to reason about decisions, and reflect why a configuration
was taken under some circumstances, proves crucial to foster understanding. By
exchanging this knowledge between agents, they contribute to a general world
model, which allows them to accurately adapt their environments.

! Prototype artifact available at |GitHub, accessed May 22nd 2024
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Fig. 1: High-level AIF implementation comprising perception and action
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Fig. 2: Inferring SLO-compliant configurations based on Markov blankets
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