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Abstract

While the emergence of Edge computing promises major improvements in IoT processing, 
the heterogeneity and volatility of Edge infrastructures make service orchestration 
increasingly complex. Yet, to maintain robust system operation, we must be certain—or at 
least certain enough—about the expected outcome of our actions, such as shifting 
resources or workloads. This talk highlights Active Inference (AIF), an agent-based 
framework inspired by neuroscience, which supports operators in developing a causal 
understanding of the underlying generative processes. By continuously exploring and 
interacting with their environment, AIF agents develop models of the systems they govern 
and their interdependencies. This, in turn, enables them to predict the outcomes of actions 
when composing systems into larger architectures. The talk first outlines how AIF, as a 
concept, is inherently designed for acting under uncertainty, and then presents examples 
of how AIF can establish robust understanding of the environment to ensure continuous 
and adaptive system operation.
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I – Common Concepts 

5

Computing Continuum (CC) as a composition of multiple 
processing tiers that stretch from IoT and edge computing, 
over Fog resources, to distant Cloud centers

Combines the benefits of all its tiers, i.e., low-latency and 
privacy-protecting computation from Edge, high availability 
and virtually unlimited processing resources from Cloud

Smart Cities are a common instance of distributed systems, 
where interconnected services (e.g., traffic surveillance or road 
surveillance) collaborate based on collected sensor data

Example of a Computing Continuum architecture [1]

[1] P. Donta, I. Murturi, V. Casamayor, B. Sedlak, and S. Dustdar; Exploring the Potential of Distributed Computing Continuum Systems (2023)
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I – Common Concepts (cont.)
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[2] Ricciardi et al., Saving Energy in Data Center Infrastructures (2011)

Elasticity allocates the right amount of resources [2]

Service Level Objectives (SLOs) specify requirements that 
must be ensured throughout operation (e.g., latency < t).

Elasticity Strategies scale a system according to current 
demand; e.g., if performance is insufficient, allocate more 
resources. However, what if this does not fulfill SLOs?

Service Level Agreements (SLAs) as binding agreement 
between service provider and consumer. However, very 
limited support in resource-restricted environments
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I – Fundamental Problems
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I – Fundamental Problems
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Heterogeneity prevents simple task distribution 
between available devices. Don’t know a priori what 
will be the behavior of service X on device Y

Physical distribution creates latency between different 
distributed devices; transferring state information (e.g., 
CPU load) creates lots of traffic on the network.
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I – Fundamental Problems (cont.)
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System dynamics change over time Low trust into black-box models

???
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I – Fundamental Problems (cont.)
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Heterogeneity prevents simple task distribution 
between available devices. Don’t know a-priori what 
will be the behavior of service X on device Y

Physical distribution creates latency between different 
distributed devices; transferring state information (e.g., 
CPU load) creates lots of traffic on the network.

Variable drifts cause any ML model to lose accuracy 
over time. Cannot train models in one-shot operations 
but must incorporate changes continuously.

Low-trust into black-box ML models that cannot give 
human-verifiable chains of thought. E.g., debugging
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Distributed processing 

– Distributed CC infrastructure 
composed of various device 
types at different locations

– Sensor data continuously 
streamed from IoT devices to 
different processing services

I – Overview of our Approach Hidden in main presentation



Service interpretation 

– Monitor processing across 
CC by collecting metrics; eval. 
real-time SLO fulfillment

– Train a model (i.e., BN) for 
predicting SLO fulfillment of 
individual services in different 
deployment configurations [7]

– Retrain model according to 
SLO prediction accuracy; slows 
down as model improves [9]

[7] Sedlak et al., Designing Reconfigurable Intelligent Systems with Markov Blankets, at ICSOC 2023
[9] Sedlak et al., SLO-Aware Task Offloading Within Collaborative Vehicle Platoons, at ICSOC 2024

I – Overview of our Approach (C1)Hidden in main presentation



Service adaptation 

– Optimize local SLO fulfillment 
by reconfiguring processing 
services; choose between avail. 
elasticity strategies [5]

– Escape local optima through 
continuous exploration; check 
poss. model improvement [12]

– Decisions can be empirically 
verified and interpreted; useful 
for non-technical explanation

[5] Sedlak et al., From Metrics to Multidimensional Elasticity Strategies, at IEEE Services EDGE 2023
[12] Sedlak et al., Active Inference on the Edge: A Design Study, at PerconAI 2024

I – Overview of our Approach (C2)Hidden in main presentation



Service collaboration

– Compose individual models 
to overarching representation; 
quantify service dependencies 
and impact on hardware [4]

– Collaborative orchestration 
considers service relations to 
optimize global SLO fulfillment

– Exchanging and merging BNs 
between services to speed up 
the onboarding of new service 
types or devices types [13]

I – Overview of our
     Approach (C3)

[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Service EDGE 2024
[13] Sedlak et al., Equilibrium in the Computing Continuum through Active Inference, at Elsevier FGCS, 2024
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Heterogeneity prevents simple task distribution 
between available devices. Don’t know a-priori what 
will be the behavior of service X on device Y

Physical distribution creates latency between different 
distributed devices; transferring state information (e.g., 
CPU load) creates lots of traffic on the network.

Variable drifts cause any ML model to lose accuracy 
over time. Cannot train models in one-shot operations 
but must incorporate changes continuously.

Low-trust into black-box ML models that cannot give 
human-verifiable chains of thought. E.g., debugging
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Decentralized decision-making based on
local observations and understanding 

I – Fundamental Problems (cont.)



21

Heterogeneity prevents simple task distribution 
between available devices. Don’t know a-priori what 
will be the behavior of service X on device Y

Physical distribution creates latency between different 
distributed devices; transferring state information (e.g., 
CPU load) creates lots of traffic on the network.

Variable drifts cause any ML model to lose accuracy 
over time. Cannot train models in one-shot operations 
but must incorporate changes continuously.

Low-trust into black-box ML models that cannot give 
human-verifiable chains of thought. E.g., debugging

ph
ys

ic
al

 d
is

ta
nc

e

???

Decentralized decision-making based on
local observations and understanding 

Continuous and lifelong learning of environment,
verifiable through structural causal models

I – Fundamental Problems (cont.)



II – Markov Blanket (MB)
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Interactions between systems (e.g., human in world) can be 
expressed through MBs; fulfill Markov property – so 
decisions can be taken based on system’s current state

Creates formal boundary between a system and external 
states; within MB, discard all variables that show no impact 
on internal states and requirements (i.e., SLO fulfillment)

Provides clear interfaces for sensory and action states; 
policy (e.g., scaling) as a mapping between these states

[3] Dustdar et al., On Distributed Computing Continuum Systems (2023)
[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services Edge 2024

Behavioral Markov blanket of a system [3]

Action-perception cycle between multiple entities [4]
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II – SLOs and Behavioral Models
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MB: Expresses how to evaluate a composite SLO and 
how to react according to the current device context

Behavioral model
Internal state (●) evaluates objectives and how these 
relate to external sensory inputs (●); can interact with 
the world through action, i.e., elasticity strategies (●), 
which are influenced by contextual factors (●) 

[5] Sedlak et al., Controlling Data Gravity and Data Friction: From Metrics to Multidimensional Elasticity Strategies, at IEEE Service EDGE 2023

Example of a behavioral model for data gravity [5]

Robust Service Orchestration for Computing Continuum Systems  – Boris Sedlak
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II – Stream Processing Scenarios

24

Commonly addressed use cases revolve around continuous stream processing; in case time-critical 
adaptations are required, this poses a higher need for sophisticated adaptation mechanisms.

     Video Processing (Yolo V8)                      Mobile Mapping (Lidar)                       QR Scanner (OpenCV)                      

[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)

Creating a mobile map from binaries using Lidar [6]  QR code scanning in a video using OpenCV [6] Object detection in a video stream using Yolo [6]
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Commonly addressed use cases revolve around continuous stream processing; in case time-critical 
adaptations are required, this poses a higher need for sophisticated adaptation mechanisms.

Abstract representation of a monitored stream processing service [6]

[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)
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Commonly addressed use cases revolve around continuous stream processing; in case time-critical 
adaptations are required, this poses a higher need for sophisticated adaptation mechanisms.

Abstract representation of a monitored stream processing service [6] Example of processing metrics as tabular data [6]

[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)
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II – Basic Methodology
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[7]

[7] Sedlak et al., Designing Reconfigurable Intelligent Systems with Markov Blankets, at ICSOC 2023

Robust Service Orchestration for Computing Continuum Systems  – Boris Sedlak

1. Bayesian Network Learning 

2. Markov Blanket Selection

3. Explainable Inference 

Optimize the system (i.e., its SLO 
fulfillment) according to model

Model: use processing metrics and 
properties to train a generative 
model that describes the variable 
relations within the environment.
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❏ Conditional Inference
Estimate impact of different 
deployment configuration

❏ Optimize SLOs
Adjust processing services 
according to inferred policy

❏ Causality filter
Extract subset of variables
that impact SLO fulfillment

❏ Behavioral MB
MB now contains contextual 
factors & elasticity strategies

❏ Structure Learning 
Various algorithms (e.g., HCS)
Directed Acyclic Graph (DAG)

❏ Parameter Learning
Various algorithms (e.g., MLE)
Conditional Prob. Table (CPT)

Robust Service Orchestration for Computing Continuum Systems  – Boris Sedlak

Bayesian Network Learning Markov Blanket Selection Knowledge Extraction
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Core methodology applied in multiple application.
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Transitive Requirements [4] Diffusing High-Level SLOs [8] SLO-Aware Offloading [9]

II – Multiple Applications

Optimize SLO fulfillment by 
deploying microservices over 
heterogeneous hardware;

use BNs to analyze & optimize  
service/device dependencies

Find configurations for subsystems 
accordion to high-level SLO values;

create hierarchy of dependencies 
and infer lower-level configurations

[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services EDGE 2024
[8] Sedlak et al., Diffusing High-level SLO in Microservice Pipelines, at IEEE SOSE 2024
[9] Sedlak et al., SLO-Aware Task Offloading Within Collaborative Vehicle Platoons, at ICSOC 2024

Offload microservices over 
heterogeneous hardware;

estimate effects of service 
swapping on SLO fulfillment
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II – Refining our Approach
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Known Shortcomings
(1) BNL requires large amounts of training data upfront
(2) can’t visit all possible states, so where to start exploring?
(3) over time, models get distorted due to variable drifts

Active Inference
Concept from neuroscience developed by Friston et al. [10,11]; 
allows agents to interact with their environment by learning the 
underlying generative models to persist over time

Action-perception cycle in 
Active Inference [11]

[10] Parr et al., Active Inference: The Free Energy Principle in Mind, Brain, and Behavior (2022)
[11] Friston et al., Designing ecosystems of intelligence from first principles (2024)
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II – Active Inference in CC Systems

35

Mapping between neuroscience and distributed computing 
systems [6,12,13]; understanding processing requirements 
(i.e., SLOs) as a form of homeostasis, e.g., cell temperature

Create autonomous components that identify how to ensure 
requirements and resolve them independently, clear 
modelling between higher-level and low-level components

Simplify service orchestration in large-scale distributed 
systems; decentralized decision-making of individual 
components avoids transferring service states to the Cloud 

[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)
[12] Sedlak et al., Active Inference on the Edge: A Design Study, at PerconAI 2024
[13] Sedlak et al., Equilibrium in the Computing Continuum through Active Inference, Elsevier FGCS (2024)

Ensure internal requirements [13]
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Approach
(1) Specify ideal runtime 
behavior through SLOs

(2) AIF agents monitor their 
environment & collect metrics

(3) Perception phase predicts 
expected SLO fulfillment and 
adjusts the generative model

(4) Action phase orchestrates 
the processing environment to 
optimize both SLOs and model 

Action and perception cycles performed by the AIF agent to create an accurate model and shape the world [6]

[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)

II – Active Inference Architecture
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II – Active Inference Architecture (cont.)

[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services EDGE 2024
[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)

Interpretable behavior [6]
– Empirically verify variable relations in the BNs, e.g., 
increasing quality (pixel) leads to high energy usage; 
adjust parameters (i.e., pixel & fps) according to SLOs

– Quantified preferences of the agent: (1) expected 
SLO fulfillment or (2) potential model improvement; 
determine the behavior of the scaling agent 

Continuous composition [4]
– Gradually create increasingly accurate models for 
individual processing services; continuously compose 
to estimate the impact they have on each other

37Robust Service Orchestration for Computing Continuum Systems  – Boris Sedlak
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[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services EDGE 2024
[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)
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IoT & Edge enable large-scale distributed services 
that optimize our daily routines; CC as underlying 
infrastructure for supporting these services

Resource limitations and device heterogeneity 
complicate service orchestration; device & service 
behavior not guaranteed, leads to violated SLOs

Missing explainability for black box ML models; 
leads to low trust and non-interpretable behavior

III – Summary
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Contemporary Challenges
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III – Summary
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Monitor processing services closely, analyze their 
behavior, and infer optimal elasticity strategy; train 
a MB that combines all these factors in one model

Dynamically optimize SLOs fulfillment for a network 
of processing services and heterogeneous devices; 
orchestrate services (i.e., placement, configuration, 
replication, etc) according to current context

Active Inference as a natural fit to train behavioral 
MBs and keep them accurate; balance continuously 
between ensuring SLOs and improving the model

Contributions & Results

Robust Service Orchestration for Computing Continuum Systems  – Boris Sedlak



High cost of running empirical experiments; slow 
training progress, needs training environment.
→ Train agents in simulated environments; creating 
accurate environment, like for digital twinning

Overhead of extracting baselines from publication; 
low rigor from generic algorithms, e.g., SB3
→ Support baseline comparison and standardized 
problem instances in evaluation environment

Governance limited to individual vendor; SLAs only 
supported by one provider and its subset of nodes
→ Create overarching models for orchestration and 
client compensation; technical & economical part

III – Summary
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Limitations & Challenges (1/2)

Upcoming paper at ACM IoT [14]

[14] Pretel E., Sedlak B. et al., Active Inference for Digital Twins: Predicting and Optimising IoT Processing Service Performance, at ACM IoT 2025
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Limitations & Challenges (1/2)

Robust Service Orchestration for Computing Continuum Systems  – Boris Sedlak

CC infrastructure split between providers

Provider A           Provider B



Missing sovereignty over data processing; devices 
rarely in possession of service consumers
 

→ Integrate personal devices into infrastructure; 
combine with personal wallets and trusted env.

Rigid inference quality for recommending actions; 
prone to violate operational boundaries, e.g., time
 

→ Consider resources and context when inferring 
actions, e.g., smaller graph; create elastic certainty

III – Summary
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Limitations & Challenges (2/2)
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Limitations & Challenges (2/2)
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