

Robust Service Orchestration for Computing Continuum Systems

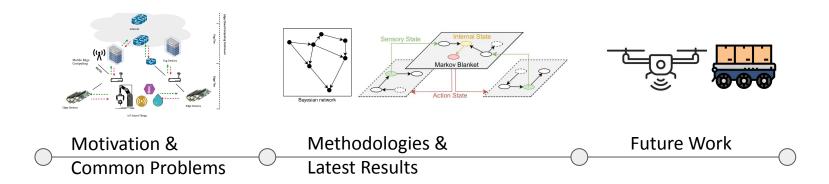
Boris Sedlak

Abstract

Hidden in main presentation

While the emergence of Edge computing promises major improvements in IoT processing, the heterogeneity and volatility of Edge infrastructures make service orchestration increasingly complex. Yet, to maintain robust system operation, we must be certain—or at least certain enough—about the expected outcome of our actions, such as shifting resources or workloads. This talk highlights Active Inference (AIF), an agent-based framework inspired by neuroscience, which supports operators in developing a causal understanding of the underlying generative processes. By continuously exploring and interacting with their environment, AIF agents develop models of the systems they govern and their interdependencies. This, in turn, enables them to predict the outcomes of actions when composing systems into larger architectures. The talk first outlines how AIF, as a concept, is inherently designed for acting under uncertainty, and then presents examples of how AIF can establish robust understanding of the environment to ensure continuous and adaptive system operation.

Structure of the Talk



Boris Sedlak

Postdoc @ UPF Barcelona Distributed Intelligence & Systems-Engineering Lab

PhD @ TU Wien, Vienna Distributed Systems Group

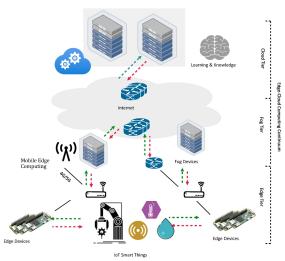
Software Engineer @ Lotterien Agile Development and Testing

I – Common Concepts

Computing Continuum (CC) as a composition of multiple processing tiers that stretch from IoT and edge computing, over Fog resources, to distant Cloud centers

Combines the benefits of all its tiers, i.e., low-latency and privacy-protecting computation from Edge, high availability and virtually unlimited processing resources from Cloud

Smart Cities are a common instance of distributed systems, where interconnected services (e.g., traffic surveillance or road surveillance) collaborate based on collected sensor data



Example of a Computing Continuum architecture [1]

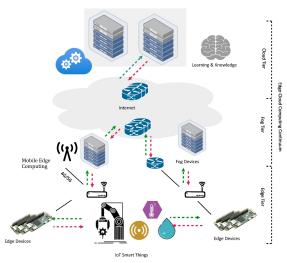
[1] P. Donta, I. Murturi, V. Casamayor, B. Sedlak, and S. Dustdar; Exploring the Potential of Distributed Computing Continuum Systems (2023)

I – Common Concepts

Computing Continuum (CC) as a composition of multiple processing tiers that stretch from IoT and edge computing, over Fog resources, to distant Cloud centers

Combines the benefits of all its tiers, i.e., low-latency and privacy-protecting computation from Edge, high availability and virtually unlimited processing resources from Cloud

Smart Cities are a common instance of distributed systems, where interconnected services (e.g., traffic surveillance or road surveillance) collaborate based on collected sensor data



Example of a Computing Continuum architecture [1]

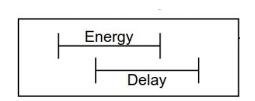
[1] P. Donta, I. Murturi, V. Casamayor, B. Sedlak, and S. Dustdar; Exploring the Potential of Distributed Computing Continuum Systems (2023)

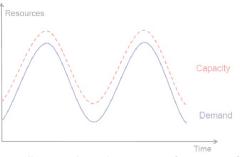
I – Common Concepts (cont.)

Service Level Objectives (SLOs) specify requirements that must be ensured throughout operation (e.g., latency < t).

Elasticity Strategies scale a system according to current demand; e.g., if performance is insufficient, allocate more resources. However, what if this does not fulfill SLOs?

Service Level Agreements (SLAs) as binding agreement between service provider and consumer. However, very limited support in resource-restricted environments





Elasticity allocates the right amount of resources [2

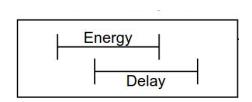
[2] Ricciardi et al., Saving Energy in Data Center Infrastructures (2011)

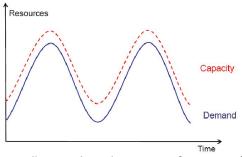
I – Common Concepts (cont.)

Service Level Objectives (SLOs) specify requirements that must be ensured throughout operation (e.g., latency < t).

Elasticity Strategies scale a system according to current demand; e.g., if performance is insufficient, allocate more resources. However, what if this does not fulfill SLOs?

Service Level Agreements (SLAs) as binding agreement between service provider and consumer. However, very limited support in resource-restricted environments





Elasticity allocates the right amount of resources [2]

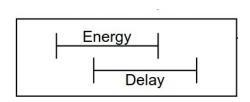
[2] Ricciardi et al., Saving Energy in Data Center Infrastructures (2011)

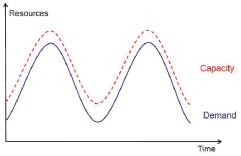
I – Common Concepts (cont.)

Service Level Objectives (SLOs) specify requirements that must be ensured throughout operation (e.g., latency < t).

Elasticity Strategies scale a system according to current demand; e.g., if performance is insufficient, allocate more resources. However, what if this does not fulfill SLOs?

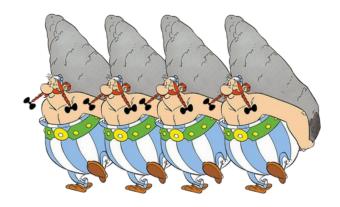
Service Level Agreements (SLAs) as binding agreement between service provider and consumer. However, very limited support in resource-restricted environments





Elasticity allocates the right amount of resources [2]

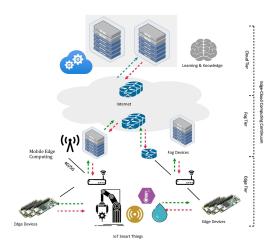
[2] Ricciardi et al., Saving Energy in Data Center Infrastructures (2011)



Homogeneous Resources (Cloud)

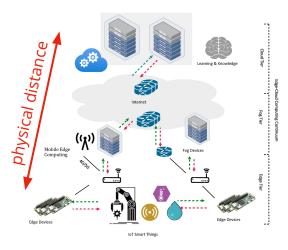
Heterogeneous Resources (CC)

Homogeneous Resources (Cloud)



Heterogeneous Resources (CC)

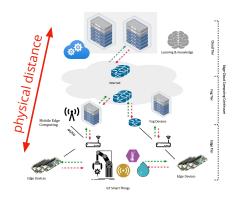
Homogeneous Resources (Cloud)



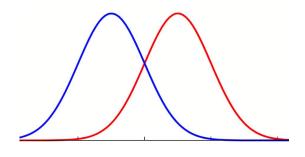
Heterogeneous Resources (CC)

Heterogeneity prevents simple task distribution between available devices. Don't know a priori what will be the *behavior* of service X on device Y

Physical distribution creates latency between different distributed devices; transferring state information (e.g., CPU load) creates lots of traffic on the network.



I – Fundamental Problems (cont.)



System dynamics change over time

Low trust into black-box models

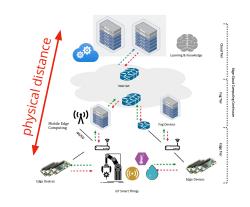
I – Fundamental Problems (cont.)

Heterogeneity prevents simple task distribution between available devices. Don't know a-priori what will be the *behavior* of service X on device Y

Physical distribution creates latency between different distributed devices; transferring state information (e.g., CPU load) creates lots of traffic on the network.

Variable drifts cause any ML model to lose accuracy over time. Cannot train models in one-shot operations but must incorporate changes continuously.

Low-trust into black-box ML models that cannot give human-verifiable chains of thought. E.g., debugging

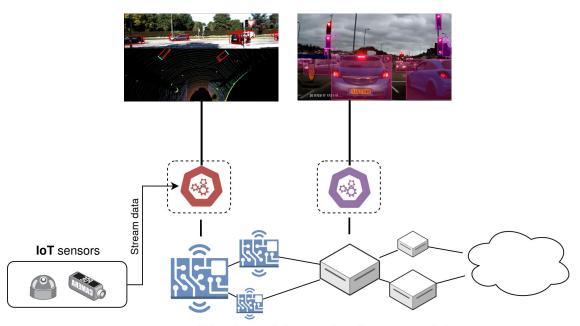


I – Overview of our Approach

Hidden in main presentation

Distributed processing

- Distributed CC infrastructure composed of various device types at different locations
- Sensor data continuously streamed from IoT devices to different processing services

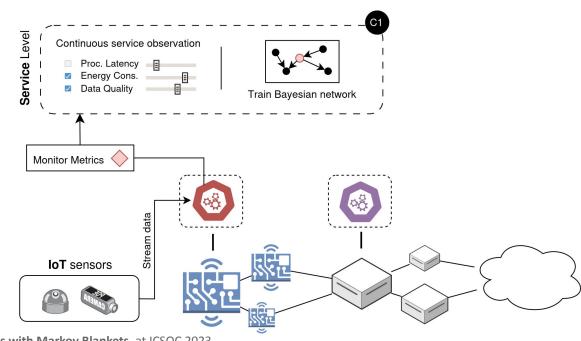


Distributed Computing Continuum Infrastructure

I – Overview of our Approach (C1) Hidden in main presentation

Service interpretation

- Monitor processing across
 CC by collecting metrics; eval.
 real-time SLO fulfillment
- Train a model (i.e., BN) for predicting SLO fulfillment of individual services in different deployment configurations [7]
- Retrain model according to
 SLO prediction accuracy; slows down as model improves [9]

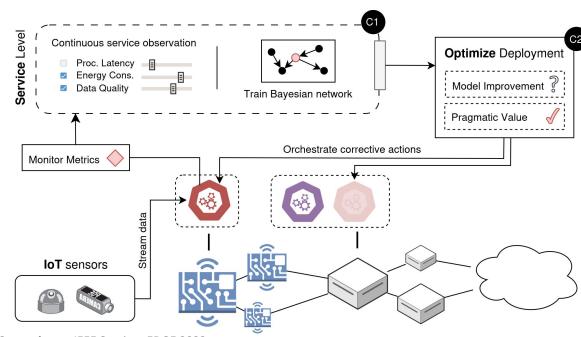


- [7] Sedlak et al., Designing Reconfigurable Intelligent Systems with Markov Blankets, at ICSOC 2023
- [9] Sedlak et al., SLO-Aware Task Offloading Within Collaborative Vehicle Platoons, at ICSOC 2024

- Overview of our Approach (C2) Hidden in main presentation

Service adaptation

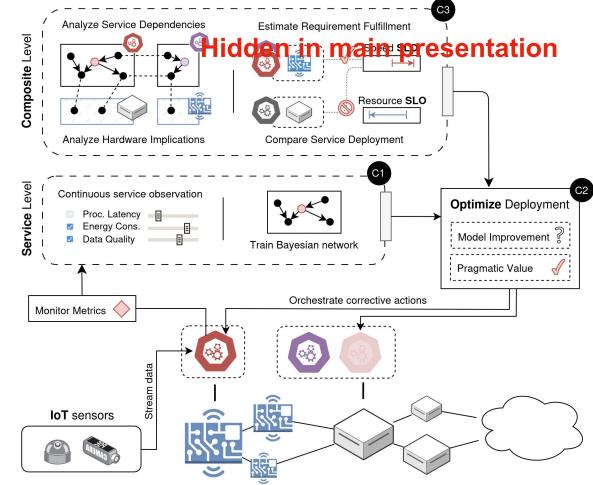
- Optimize **local SLO fulfillment** by reconfiguring processing services; choose between avail. elasticity strategies [5]
- Escape local optima through continuous exploration; check poss. model improvement [12]
- Decisions can be empirically verified and interpreted; useful for non-technical explanation



I – Overview of our Approach (C3)

Service collaboration

- Compose individual models to overarching representation; quantify service dependencies and impact on hardware [4]
- Collaborative orchestration considers service relations to optimize global SLO fulfillment
- Exchanging and merging BNs between services to speed up the **onboarding** of new service types or devices types [13]



I – Fundamental Problems (cont.)

Heterogeneity prevents simple task distribution
between available devices. Den't know a priori what
will be

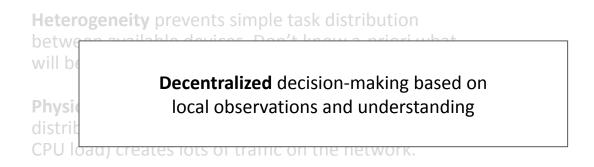
Decentralized decision-making based on
local observations and understanding
distrik
CPU load creates lots of transcontine network.

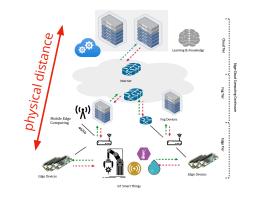
Variable drifts cause any ML model to lose accuracy over time. Cannot train models in one-shot operations but must incorporate changes continuously.

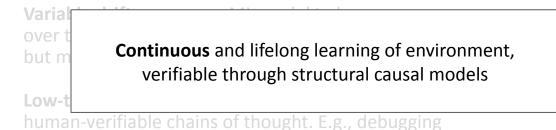
Low-trust into black-box ML models that cannot give human-verifiable chains of thought. E.g., debugging



I – Fundamental Problems (cont.)







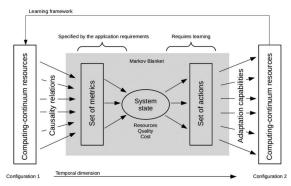
II – Markov Blanket (MB)

Interactions between **systems** (e.g., human in world) can be expressed through MBs; fulfill Markov property – so decisions can be taken based on system's current state

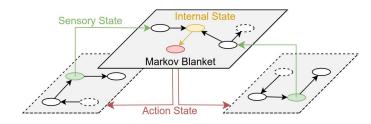
Creates **formal boundary** between a system and external states; within MB, discard all variables that show no impact on internal states and requirements (i.e., SLO fulfillment)

Provides clear interfaces for **sensory** and action **states**; policy (e.g., scaling) as a mapping between these states

^[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services Edge 2024



Behavioral Markov blanket of a system [3]



Action-perception cycle between multiple entities [4]

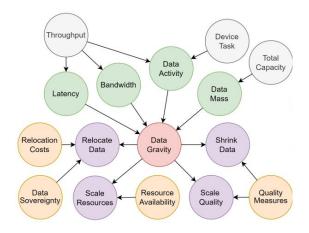
II – SLOs and Behavioral Models

Hidden in main presentation

MB: Expresses how to evaluate a composite SLO and how to react according to the current device context

Behavioral model

Internal state (•) evaluates objectives and how these relate to external sensory inputs (•); can interact with the world through action, i.e., elasticity strategies (•), which are influenced by contextual factors (•)



Example of a behavioral model for data gravity [5]

[5] Sedlak et al., Controlling Data Gravity and Data Friction: From Metrics to Multidimensional Elasticity Strategies, at IEEE Service EDGE 2023

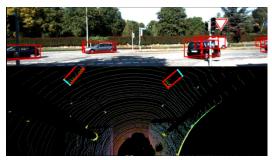
II – Stream Processing Scenarios

Commonly addressed use cases revolve around continuous **stream processing**; in case **time-critical** adaptations are required, this poses a higher need for sophisticated adaptation mechanisms.

Video Processing (Yolo V8)

Object detection in a video stream using Yolo [6]

Mobile Mapping (Lidar)



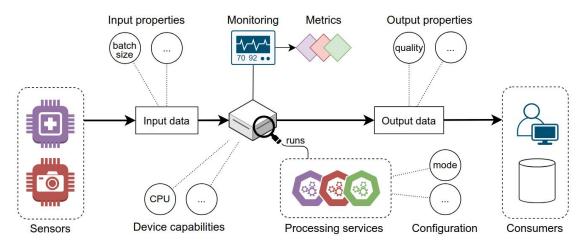
Creating a mobile map from binaries using Lidar [6]

QR Scanner (OpenCV)

QR code scanning in a video using OpenCV [6]

II – Stream Processing Scenarios

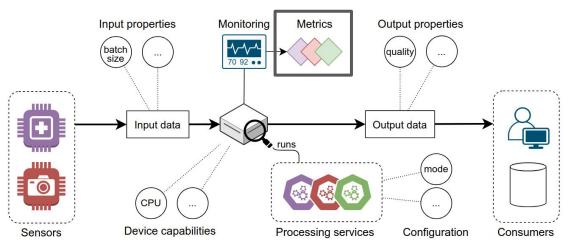
Commonly addressed use cases revolve around continuous **stream processing**; in case **time-critical** adaptations are required, this poses a higher need for sophisticated adaptation mechanisms.

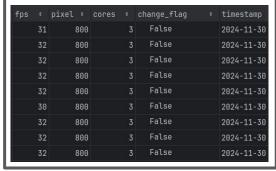


Abstract representation of a monitored stream processing service [6]

II – Stream Processing Scenarios

Commonly addressed use cases revolve around continuous **stream processing**; in case **time-critical** adaptations are required, this poses a higher need for sophisticated adaptation mechanisms.





Abstract representation of a monitored stream processing service [6]

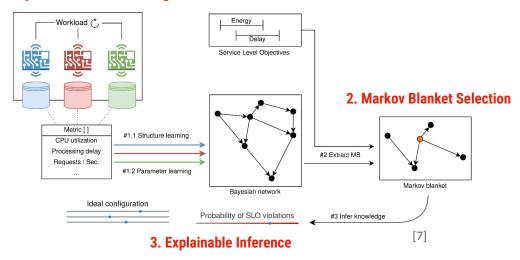
Example of processing metrics as tabular data [6]

II – Basic Methodology

Optimize the system (i.e., its SLO fulfillment) according to model

Model: use processing metrics and properties to train a *generative model* that describes the variable relations within the environment.

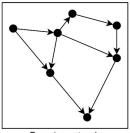
1. Bayesian Network Learning



[7] Sedlak et al., Designing Reconfigurable Intelligent Systems with Markov Blankets, at ICSOC 2023

II - Basic Methodology

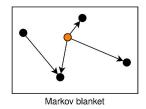
Bayesian Network Learning



Bayesian network

- Various algorithms (e.g., HCS)
 Directed Acyclic Graph (DAG)
- □ Parameter Learning
 Various algorithms (e.g., MLE)
 Conditional Prob. Table (CPT)

Markov Blanket Selection



- Causality filter Extract subset of variables that impact SLO fulfillment
- Behavioral MB

 MB now contains contextual factors & elasticity strategies

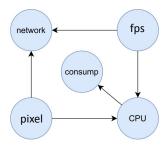
Knowledge Extraction



- ☐ Conditional Inference
 Estimate impact of different deployment configuration
- Optimize SLOs
 Adjust processing services
 according to inferred policy

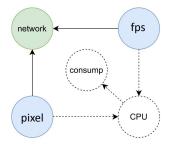
II - Basic Methodology

Bayesian Network Learning



- Various algorithms (e.g., HCS)
 Directed Acyclic Graph (DAG)
- □ Parameter Learning
 Various algorithms (e.g., MLE)
 Conditional Prob. Table (CPT)

Markov Blanket Selection

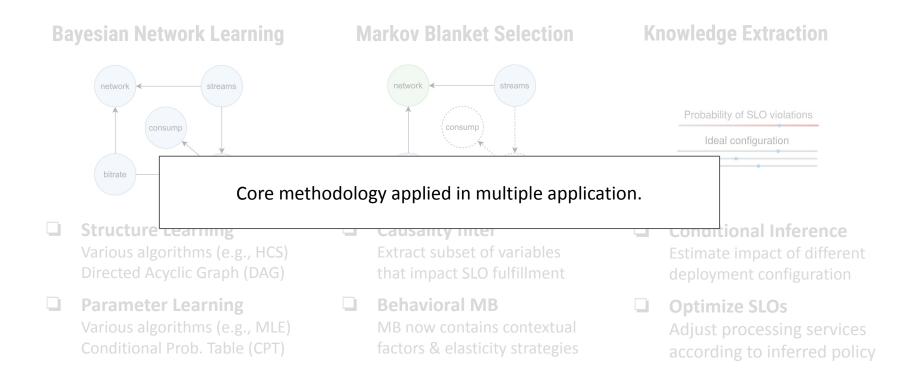


- Causality filter Extract subset of variables that impact SLO fulfillment
 - Behavioral MB
 MB now contains contextual factors & elasticity strategies

Knowledge Extraction

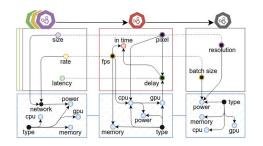
- Conditional Inference
 Estimate impact of different deployment configuration
- Optimize SLOs
 Adjust processing services
 according to inferred policy

II - Basic Methodology

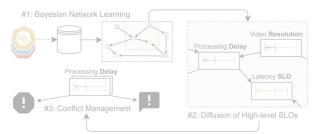


II – Multiple Applications

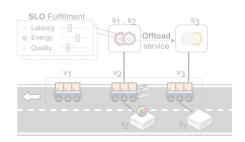
Transitive Requirements [4]



Diffusing High-Level SLOs [8]



SLO-Aware Offloading [9]



Optimize SLO fulfillment by deploying microservices over **heterogeneous hardware**;

use BNs to analyze & optimize service/device dependencies

Find configurations for subsystems accordion to **high-level SLO** values; create hierarchy of dependencies and infer lower-level configurations

Offload microservices over heterogeneous hardware; estimate effects of service swapping on SLO fulfillment

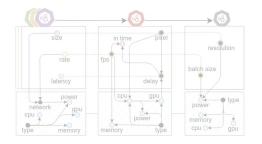
^[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services EDGE 2024

^[8] Sedlak et al., Diffusing High-level SLO in Microservice Pipelines, at IEEE SOSE 2024

^[9] Sedlak et al., SLO-Aware Task Offloading Within Collaborative Vehicle Platoons, at ICSOC 2024

II – Multiple Applications

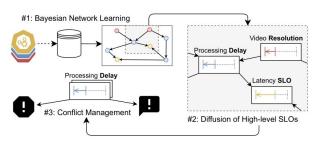
Transitive Requirements [4]



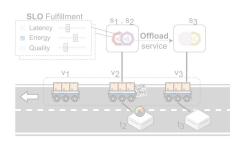
Optimize SLO fulfillment by deploying microservices over **heterogeneous hardware**;

use BNs to analyze & optimize service/device dependencies

Diffusing High-Level SLOs [8]



SLO-Aware Offloading [9]



Find configurations for subsystems accordion to **high-level SLO** values; create hierarchy of dependencies and infer lower-level configurations

Offload microservices over heterogeneous hardware; estimate effects of service swapping on SLO fulfillment

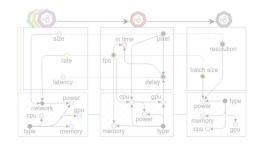
^[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services EDGE 2024

^[8] Sedlak et al., Diffusing High-level SLO in Microservice Pipelines, at IEEE SOSE 2024

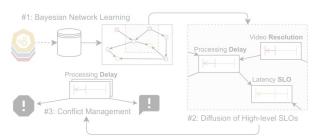
^[9] Sedlak et al., SLO-Aware Task Offloading Within Collaborative Vehicle Platoons, at ICSOC 2024

II – Multiple Applications

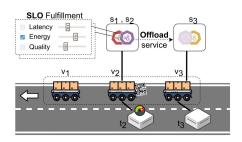
Transitive Requirements [4]



Diffusing High-Level SLOs [8]



SLO-Aware Offloading [9]



Optimize SLO fulfillment by deploying microservices over **heterogeneous hardware**;

use BNs to analyze & optimize service/device dependencies

Find configurations for subsystems accordion to **high-level SLO** values; create hierarchy of dependencies and infer lower-level configurations

Offload microservices over heterogeneous hardware; estimate effects of service swapping on SLO fulfillment

^[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services EDGE 2024

^[8] Sedlak et al., Diffusing High-level SLO in Microservice Pipelines, at IEEE SOSE 2024

^[9] Sedlak et al., SLO-Aware Task Offloading Within Collaborative Vehicle Platoons, at ICSOC 2024

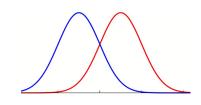
II - Refining our Approach

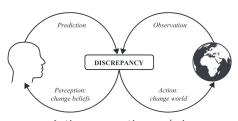
Known Shortcomings

- (1) BNL requires large amounts of training data upfront
- (2) can't visit all possible states, so where to start exploring?
- (3) over time, models get distorted due to variable drifts

Active Inference

Concept from **neuroscience** developed by Friston et al. [10,11]; allows agents to interact with their environment by learning the underlying **generative models** to persist over time





Action-perception cycle in Active Inference [11]

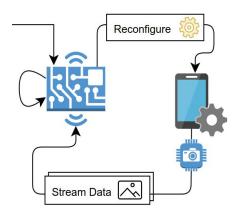
- [10] Parr et al., Active Inference: The Free Energy Principle in Mind, Brain, and Behavior (2022)
- [11] Friston et al., Designing ecosystems of intelligence from first principles (2024)

II – Active Inference in CC Systems

Mapping between neuroscience and distributed computing systems [6,12,13]; understanding processing requirements (i.e., SLOs) as a form of **homeostasis**, e.g., cell temperature

Create autonomous components that identify how to ensure requirements and resolve them independently, clear modelling between higher-level and low-level components

Simplify service orchestration in large-scale distributed systems; decentralized decision-making of individual components **avoids** transferring service states to the Cloud



Ensure internal requirements [13]

^[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)

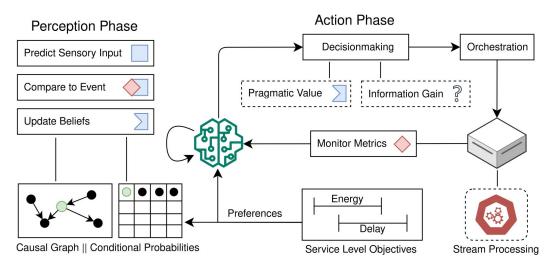
^[12] Sedlak et al., Active Inference on the Edge: A Design Study, at PerconAl 2024

^[13] Sedlak et al., Equilibrium in the Computing Continuum through Active Inference, Elsevier FGCS (2024)

II – Active Inference Architecture

Approach

- (1) **Specify** ideal runtime behavior through SLOs
- (2) AIF agents monitor their environment & collect metrics
- (3) **Perception phase** predicts expected SLO fulfillment and adjusts the generative model
- (4) **Action phase** orchestrates the processing environment to optimize both SLOs and model



Action and perception cycles performed by the AIF agent to create an accurate model and shape the world [6]

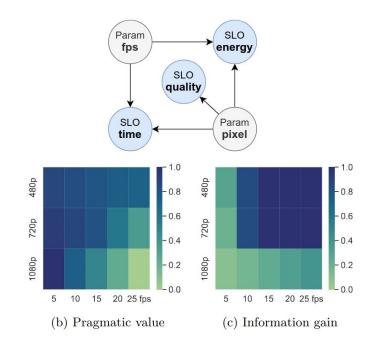
II – Active Inference Architecture (cont.)

Interpretable behavior [6]

- Empirically verify variable relations in the BNs, e.g., increasing quality (pixel) leads to high energy usage; adjust **parameters** (i.e., pixel & fps) according to SLOs
- Quantified preferences of the agent: (1) expected
 SLO fulfillment or (2) potential model improvement;
 determine the behavior of the scaling agent

Continuous composition [4]

 Gradually create increasingly accurate models for individual processing services; continuously compose to estimate the **impact** they have on each other



^[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services EDGE 2024

^[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)

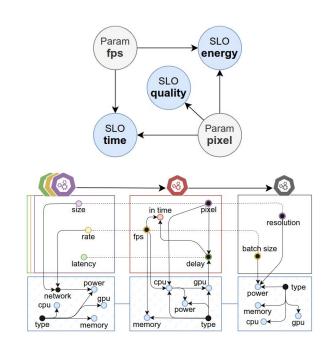
II – Active Inference Architecture (cont.)

Interpretable behavior [6]

- Empirically verify variable relations in the BNs, e.g., increasing quality (pixel) leads to high energy usage; adjust **parameters** (i.e., pixel & fps) according to SLOs
- Quantified preferences of the agent: (1) expected
 SLO fulfillment or (2) potential model improvement;
 determine the behavior of the scaling agent

Continuous composition [4]

 Gradually create increasingly accurate models for individual processing services; continuously compose to estimate the **impact** they have on each other



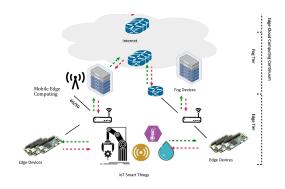
^[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services EDGE 2024

^[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)

IoT & Edge enable large-scale distributed services that optimize our daily routines; CC as underlying infrastructure for supporting these services

Resource limitations and device heterogeneity complicate service orchestration; device & service behavior not guaranteed, leads to violated SLOs

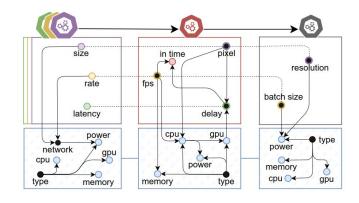
Missing explainability for black box ML models; leads to low trust and non-interpretable behavior

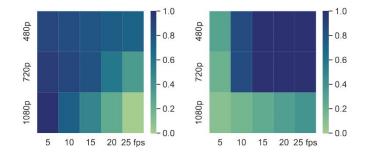


Monitor processing services closely, analyze their behavior, and infer optimal elasticity strategy; train a MB that combines all these factors in one model

Dynamically optimize SLOs fulfillment for a network of processing services and heterogeneous devices; orchestrate services (i.e., placement, configuration, replication, etc) according to current context

Active Inference as a natural fit to train behavioral MBs and keep them accurate; balance continuously between ensuring SLOs and improving the model





High cost of running empirical experiments; slow training progress, needs training environment.

→ Train agents in simulated environments; creating accurate environment, like for **digital twinning**

Overhead of extracting baselines from publication; low rigor from generic algorithms, e.g., SB3

→ Support baseline comparison and standardized problem instances in evaluation environment

Governance limited to individual vendor; SLAs only supported by one provider and its subset of nodes → Create overarching models for orchestration and client compensation; technical & economical part

Upcoming paper at ACM IoT [14]

High cost of running empirical experiments; slow training progress, needs training environment.

→ Train agents in simulated environments; creating accurate environment, like for **digital twinning**

Overhead of extracting baselines from publication; low rigor from generic algorithms, e.g., SB3

→ Support baseline comparison and standardized problem instances in evaluation environment

Governance limited to individual vendor; SLAs only supported by one provider and its subset of nodes

→ Create overarching models for orchestration and client compensation; technical & economical part

Upcoming paper at ACM IoT [14]

III – Summary Limitations & Challenges (1/2)

High cost of running empirical experiments; slow training progress, needs training environment.

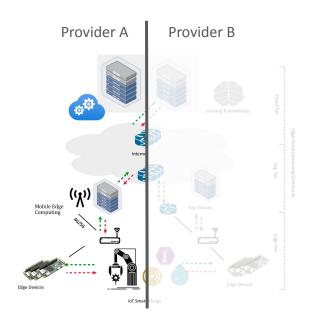
→ Train agents in simulated environments; creating accurate environment, like for **digital twinning**

Overhead of extracting baselines from publication; low rigor from generic algorithms, e.g., SB3

→ Support baseline comparison and standardized problem instances in evaluation environment

Governance limited to individual vendor; SLAs only supported by one provider and its subset of nodes

→ Create overarching models for orchestration and client compensation; technical & economical part

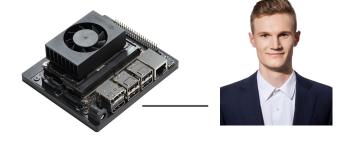


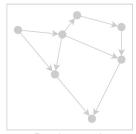
CC infrastructure split between providers

Missing sovereignty over data processing; devices rarely in possession of service consumers

→ Integrate personal devices into infrastructure; combine with personal wallets and trusted env.

Rigid inference quality for recommending actions; prone to violate operational boundaries, e.g., time → Consider resources and context when inferring actions, e.g., smaller graph; create **elastic certainty**



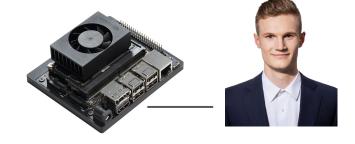


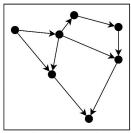
Bayesian network

Missing sovereignty over data processing; devices rarely in possession of service consumers

→ Integrate personal devices into infrastructure; combine with personal wallets and trusted env.

Rigid inference quality for recommending actions; prone to violate operational boundaries, e.g., time → Consider resources and context when inferring actions, e.g., smaller graph; create **elastic certainty**





Bayesian network