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Abstract Hidden in main presentation

While the emergence of Edge computing promises major improvements in IoT processing,
the heterogeneity and volatility of Edge infrastructures make service orchestration
increasingly complex. Yet, to maintain robust system operation, we must be certain—or at
least certain enough—about the expected outcome of our actions, such as shifting
resources or workloads. This talk highlights Active Inference (AIF), an agent-based
framework inspired by neuroscience, which supports operators in developing a causal
understanding of the underlying generative processes. By continuously exploring and
interacting with their environment, AIF agents develop models of the systems they govern
and their interdependencies. This, in turn, enables them to predict the outcomes of actions
when composing systems into larger architectures. The talk first outlines how AIF, as a
concept, is inherently designed for acting under uncertainty, and then presents examples
of how AIF can establish robust understanding of the environment to ensure continuous
and adaptive system operation.
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upf.| | - Common Concepts

Computing Continuum (CC) as a composition of multiple
processing tiers that stretch from loT and edge computing,
over Fog resources, to distant Cloud centers
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Edge Devices

IoT Smart Things

Example of a Computing Continuum architecture [1]

[1] P. Donta, I. Murturi, V. Casamayor, B. Sedlak, and S. Dustdar; Exploring the Potential of Distributed Computing Continuum Systems (2023)
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upf.| | - Common Concepts

Computing Continuum (CC) as a composition of multiple
processing tiers that stretch from loT and edge computing,
over Fog resources, to distant Cloud centers

Combines the benefits of all its tiers, i.e., low-latency and
privacy-protecting computation from Edge, high availability
and virtually unlimited processing resources from Cloud

Smart Cities are a common instance of distributed systems,
where interconnected services (e.g., traffic surveillance or road
surveillance) collaborate based on collected sensor data
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10T Smart Things

Example of a Computing Continuum architecture [1]

[1] P. Donta, I. Murturi, V. Casamayor, B. Sedlak, and S. Dustdar; Exploring the Potential of Distributed Computing Continuum Systems (2023)
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| - Common Concepts (cont.)

Service Level Objectives (SLOs) specify requirements that
must be ensured throughout operation (e.g., latency < t).

[2] Ricciardi et al., Saving Energy in Data Center Infrastructures (2011)

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak




upf.| | - Common Concepts (cont.)

. .. . . |__Energy |
Service Level Objectives (SLOs) specify requirements that | |

must be ensured throughout operation (e.g., latency < t). I I

Elasticity Strategies scale a system according to current
demand; e.g., if performance is insufficient, allocate more
resources. However, what if this does not fulfill SLOs?

Resources

Capacity

Demand

Time
Elasticity allocates the right amount of resources [2]

[2] Ricciardi et al., Saving Energy in Data Center Infrastructures (2011)
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upf.| | - Common Concepts (cont.)

. .. . . |__Energy |
Service Level Objectives (SLOs) specify requirements that | |

must be ensured throughout operation (e.g., latency < t). |

Elasticity Strategies scale a system according to current
demand; e.g., if performance is insufficient, allocate more
resources. However, what if this does not fulfill SLOs?

Resources

Capacity
Service Level Agreements (SLAs) as binding agreement
between service provider and consumer. However, very
limited support in resource-restricted environments

Demand

Time
Elasticity allocates the right amount of resources [2]

[2] Ricciardi et al., Saving Energy in Data Center Infrastructures (2011)
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upf| | - Fundamental Problems

Homogeneous Resources (Cloud) Heterogeneous Resources (CC)

Free images from https://www.nicepng.com/ourpic/u2e6r5y3e6by3t4i1_dogmatix-obelix-asterix-obelix-asterix-a-obelix-png/
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Free images from https://www.freepik.com/free-photos-vectors/server-rack

| - Fundamental Problems

Homogeneous Resources (Cloud)
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upf| | - Fundamental Problems

Homogeneous Resources (Cloud)

Free images from https://www.freepik.com/free-photos-vectors/server-rack
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upf| | - Fundamental Problems

Heterogeneity prevents simple task distribution
between available devices. Don’t know a priori what
will be the behavior of service X on device Y

Physical distribution creates latency between different
distributed devices; transferring state information (e.g.,
CPU load) creates lots of traffic on the network.

13



upf.| | - Fundamental Problems (cont.)

S

System dynamics change over time Low trust into black-box models

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak



upf.| | - Fundamental Problems (cont.)

Variable drifts cause any ML model to lose accuracy
over time. Cannot train models in one-shot operations
but must incorporate changes continuously.

Low-trust into black-box ML models that cannot give
human-verifiable chains of thought. E.g., debugging

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak
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upf.| | - Overview of our Approach

Distributed processing

— Distributed CC infrastructure
composed of various device
types at different locations

— Sensor data continuously
streamed from loT devices to
different processing services

loT sensors

a%

Stream data

Hidden in main presentation

Distributed Computing Continuum Infrastructure



upf| | - Overview of our Approach (C1)Hidden in main presentation

Service interpretation

M it . ?) |{ Continuous service observation \I
— Monitor processing across 3 W
. . o | Proc. Latency  [g |
CC by collecting metrics; eval. 2 | Energy Cons. g ‘ |
real-time SLO fulfillment 3 '\ . . Train Bayesian network /'
— Train a model (i.e., BN) for T
predicting SLO fulfillment of Monitor Metrics <>

individual services in different
deployment configurations [7]

— Retrain model according to
SLO prediction accuracy; slows
down as model improves [9]

Stream data

loT sensors

@% -

[7] Sedlak et al., Designing Reconfigurable Intelligent Systems with Markov Blankets, at ICSOC 2023
[9] Sedlak et al., SLO-Aware Task Offloading Within Collaborative Vehicle Platoons, at ICSOC 2024




upf| | - Overview of our Approach (C2)Hidden in main presentation

Service adaptation o
E {/'_ _‘_ - = _. e — '_. —————————————
. . . > Cont b: t
— Optimize local SLO fulfillment g ";”°”SLS:"""°6 epservation W Optimize Deployment
by reconfiguring processing &1 o cwone © g I 5
services; choose between avail. § 1 @ Damdualy @ Train Bayesian network b it
elasticity strategies [5] ‘o _T _____________________

— Escape local optima through
continuous exploration; check
poss. model improvement [12]

Monitor Metrics O

— Decisions can be empirically
verified and interpreted; useful
for non-technical explanation

Stream data

loT sensors

8% |

[5] Sedlak et al., From Metrics to Multidimensional Elasticity Strategies, at IEEE Services EDGE 2023
[12] Sedlak et al., Active Inference on the Edge: A Design Study, at PerconAl 2024
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| - Overview of our
Approach (C3)

Composite Level

Service collaboration

° | ) ) )

. .. > Cont b. t
_ Compose individual models 8 | on u;uousLs:arwceo servation W Optimize Deployment
to overarching representation; g Eneray Cone, B e e
guantify service dependencies 5 Data Quality B Tralii Bayesin newwik i Model Improvement ¢ |

and impact on hardware [4]

— Collaborative orchestration
considers service relations to
optimize global SLO fulfillment

Monitor Metrics <>

— Exchanging and merging BNs
between services to speed up
the onboarding of new service

types or devices types [13] [ @
(0

[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Service EDGE 2024
[13] Sedlak et al., Equilibrium in the Computing Continuum through Active Inference, at Elsevier FGCS, 2024

loT sensors

Stream data




upf.| | - Fundamental Problems (cont.)

Decentralized decision-making based on
local observations and understanding

Variable drifts cause any ML model to lose accuracy
over time. Cannot train models in one-shot operations
but must incorporate changes continuously.

Low-trust into black-box ML models that cannot give
human-verifiable chains of thought. E.g., debugging

20



| - Fundamental Problems (cont.)
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Continuous and lifelong learning of environment,
verifiable through structural causal models




upf.| || - Markov Blanket (MB)

Interactions between systems (e.g., human in world) can be
expressed through MBs; fulfill Markov property — so
decisions can be taken based on system’s current state

Creates formal boundary between a system and external
states; within MB, discard all variables that show no impact
on internal states and requirements (i.e., SLO fulfillment)

Provides clear interfaces for sensory and action states;
policy (e.g., scaling) as a mapping between these states

[3] Dustdar et al., On Distributed Computing Continuum Systems (2023)
[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services Edge 2024

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak
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upf| || - SLOs and Behavioral Models

MB: Expresses how to evaluate a composite SLO and
how to react according to the current device context

Behavioral model

Internal state (®) evaluates objectives and how these

relate to external sensory inputs (®); can interact with
the world through action, i.e., elasticity strategies (e),
which are influenced by contextual factors (*)

Hidden in main presentation
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Example of a behavioral model for data gravity [5]

[5] Sedlak et al., Controlling Data Gravity and Data Friction: From Metrics to Multidimensional Elasticity Strategies, at IEEE Service EDGE 2023

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak
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upf| |l - Stream Processing Scenarios

Commonly addressed use cases revolve around continuous stream processing; in case time-critical
adaptations are required, this poses a higher need for sophisticated adaptation mechanisms.

Video Processing (Yolo V8 Mobile Mapping (Lidar QR Scanner (OpenCV)

T

2017/03/17 17:51:18

Object detection in a video stream using Yolo [6] Creating a mobile map from binaries using Lidar [6] QR code scanning in a video using OpenCV [6]

[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak 24



upf| |l - Stream Processing Scenarios

Commonly addressed use cases revolve around continuous stream processing; in case time-critical
adaptations are required, this poses a higher need for sophisticated adaptation mechanisms.

Input properties Monitoring Metrics Output properties

# '—) Input data Output data ——)- %
b runs
z [ W ‘ @ ; z
g o e 5 O

Sensors Device capabilities Processing services Configuration Consumers

Abstract representation of a monitored stream processing service [6]

[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak



upf| |l - Stream Processing Scenarios

Commonly addressed use cases revolve around continuous stream processing; in case time-critical
adaptations are required, this poses a higher need for sophisticated adaptation mechanisms.

Input properties Monitoring Metrics Output properties

# -—) Input data

Output data ——) %

Sensors Device capabilities Processing services Configuration Consumers

[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak 26
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Optimize the system (i.e., its SLO
fulfillment) according to model

Model: use processing metrics and
properties to train a generative
model that describes the variable
relations within the environment.

Il - Basic Methodology

1. Bayesian Network Learning

’—Workload ¢

=

Energy
Delay

Service Level Objectives

Metr.ic 1 ‘

CPU utilization
Processing delay
Requests / Sec.

#1.1 Structure learning
_—

_ >

#1.2 Parameter learning

L
#2 Extract MB
_

Bayesian network

Ideal configuration

Probability of SLO violations

2. Markov Blanket Selection

Markov blanket

#3 Infer knowledge J

3. Explainable Inference

[7] Sedlak et al., Designing Reconfigurable Intelligent Systems with Markov Blankets, at ICSOC 2023

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak

<

[7]
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upf| |l - Basic Methodology

Bayesian Network Learning Markov Blanket Selection

Markov blanket

Bayesian network

(A Structure Learning A Causality filter
Various algorithms (e.g., HCS) Extract subset of variables
Directed Acyclic Graph (DAG) that impact SLO fulfillment
(d Parameter Learning (d Behavioral MB
Various algorithms (e.g., MLE) MB now contains contextual
Conditional Prob. Table (CPT) factors & elasticity strategies

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak

Knowledge Extraction

Probability of SLO violations

Ideal configuration

[ Conditional Inference

Estimate impact of different
deployment configuration

(d Optimize SLOs

Adjust processing services
according to inferred policy

28



Bayesian Network Learning
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(A Structure Learning

Various algorithms (e.g., HCS)
Directed Acyclic Graph (DAG)

A Parameter Learning

Various algorithms (e.g., MLE)
Conditional Prob. Table (CPT)

upf| |l - Basic Methodology

Markov Blanket Selection

~
\

network <—\fps/\

I :‘:consump\:} ;
(pixel\ """"""""" * CPU

A Causality filter
Extract subset of variables
that impact SLO fulfillment

(1 Behavioral MB

MB now contains contextual
factors & elasticity strategies

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak

Knowledge Extraction

Probability of SLO violations

Ideal configuration

°
°

[ Conditional Inference

Estimate impact of different
deployment configuration

(d Optimize SLOs

Adjust processing services
according to inferred policy

29
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Il - Basic Methodology

Core methodology applied in multiple application.

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak
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Il - Multiple Applications

Transitive Requirements [4]

©——o——0
— )

size in time pixel

°

resolution

rate fps L

batch size
L

Iatéhcy delay
cpu u
43 power P gp! type
network gpu power,
cpu == =
power b memory
type memory memory type cpu gpu

Optimize SLO fulfillment by
deploying microservices over
heterogeneous hardware;

use BNs to analyze & optimize
service/device dependencies

[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services EDGE 2024
[8] Sedlak et al., Diffusing High-level SLO in Microservice Pipelines, at IEEE SOSE 2024
[9] Sedlak et al., SLO-Aware Task Offloading Within Collaborative Vehicle Platoons, at ICSOC 2024 31
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Il - Multiple Applications

Diffusing High-Level SLOs [8]

#1: Bayesian Network Learning

#2: Diffusion of High-level SLOs

o #3: Conflict Management

Find configurations for subsystems
accordion to high-level SLO values;

create hierarchy of dependencies
and infer lower-level configurations

[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services EDGE 2024
[8] Sedlak et al., Diffusing High-level SLO in Microservice Pipelines, at IEEE SOSE 2024
[9] Sedlak et al., SLO-Aware Task Offloading Within Collaborative Vehicle Platoons, at ICSOC 2024
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upf.| || - Multiple Applications

[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services EDGE 2024
[8] Sedlak et al., Diffusing High-level SLO in Microservice Pipelines, at IEEE SOSE 2024
[9] Sedlak et al., SLO-Aware Task Offloading Within Collaborative Vehicle Platoons, at ICSOC 2024

SLO-Aware Offloading [9]

Latency [
| @ Energy |
| Quaity [

Offload microservices over
heterogeneous hardware;

estimate effects of service
swapping on SLO fulfillment

33



upf.| |l - Refining our Approach

Known Shortcomings

(1) BNL requires large amounts of training data upfront

(2) can’t visit all possible states, so where to start exploring?
(3) over time, models get distorted due to variable drifts

Active Inference

Concept from neuroscience developed by Friston et al. [10,11];
allows agents to interact with their environment by learning the
underlying generative models to persist over time

[10] Parr et al., Active Inference: The Free Energy Principle in Mind, Brain, and Behavior (2022)
[11] Friston et al., Designing ecosystems of intelligence from first principles (2024)

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak

Observation

Prediction

DISCREPANCY

Perception:
change beliefs

Action:
change world

Action-perception cycle in
Active Inference [11]

34



upf.| |l - Active Inference in CC Systems

Reconfigure

Mapping between neuroscience and distributed computing 9
systems [6,12,13]; understanding processing requirements f
(i.e., SLOs) as a form of homeostasis, e.g., cell temperature C
Create autonomous components that identify how to ensure
requirements and resolve them independently, clear
modelling between higher-level and low-level components -

Stream Data i

Simplify service orchestration in large-scale distributed
systems; decentralized decision-making of individual
components avoids transferring service states to the Cloud

Ensure internal requirements [13]

[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)
[12] Sedlak et al., Active Inference on the Edge: A Design Study, at PerconAl 2024
[13] Sedlak et al., Equilibrium in the Computing Continuum through Active Inference, Elsevier FGCS (2024)

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak
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|| - Active Inference Architecture

ApprOaCh Perception Phase Action Phase

(1) Specify ideal runtime Predict Sensory Input | | Decisionmaking »| Orchestration
behavior through SLOs T .

(2) AIF agents monitor their kbl _ oot Voo 21; | omaton Gan |
environment & collect metrics Update Beliefs S

(3) Perception phase predicts
expected SLO fulfillment and
adjusts the generative model

‘ C Monitor Metrics <>

_ o |[C]e]e]e —

(4) Action phase orchestrates .\.z\. | Ppreterences ||—| |

the processing environment to - [ Delay | ]
optimize both SLOs and model Causal Graph || Conditional Probabilities Service Level Objectives Stream Processing

Action and perception cycles performed by the AIF agent to create an accurate model and shape the world [6]

[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak 36



upf.[ || - Active Inference Architecture (cont.)

Interpretable behavior [6]

— Empirically verify variable relations in the BNs, e.g.,
increasing quality (pixel) leads to high energy usage;
adjust parameters (i.e., pixel & fps) according to SLOs

— Quantified preferences of the agent: (1) expected
SLO fulfillment or (2) potential model improvement;
determine the behavior of the scaling agent

720p  480p

1080p

5 10 15 20 25fps

(b) Pragmatic value

[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services EDGE 2024
[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak

-0.0
5 10 15 20 25fps

(c) Information gain
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Interpretable behavior [6]

— Empirically verify variable relations in the BNs, e.g.,
increasing quality (pixel) leads to high energy usage;
adjust parameters (i.e., pixel & fps) according to SLOs

— Quantified preferences of the agent: (1) expected
SLO fulfillment or (2) potential model improvement;
determine the behavior of the scaling agent

Continuous composition [4]

— Gradually create increasingly accurate models for
individual processing services; continuously compose
to estimate the impact they have on each other

[4] Sedlak et al., Markov Blanket Composition of SLOs, at IEEE Services EDGE 2024

upf.[ || - Active Inference Architecture (cont.)

A

~

//V X \\
[ SLO
\energy/

size in time/‘piél i i
reso|ution
rate fps L
batch size
¢ [
latency delay
cpu u
4 power PUY gp type
network gpu power
cpu 1
i power memory
cpu gpu

memory

[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025 at Springer ES)

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak
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Il - Summary
Contemporary Challenges

loT & Edge enable large-scale distributed services
that optimize our daily routines; CC as underlying
infrastructure for supporting these services

Resource limitations and device heterogeneity
complicate service orchestration; device & service
behavior not guaranteed, leads to violated SLOs

Missing explainability for black box ML models;
leads to low trust and non-interpretable behavior

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak
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upf.| |l - Summary

Contributions & Results © 00— 0
( size in time ixel
t /. resolution
_ _ _ _ PR §
Monitor processing services closely, analyze their e el tch aine
behavior, and infer optimal elasticity strategy; train it delay 1 i
a MB that combines all these factors in one model L ower cpuy_opu i
cpu — O —
. . . N memory
Dynamically optimize SLOs fulfillment for a network K e 00 > e, cpu 4

of processing services and heterogeneous devices;
orchestrate services (i.e., placement, configuration,
replication, etc) according to current context

1.0

480p
480p

720p
720p

Active Inference as a natural fit to train behavioral
MBs and keep them accurate; balance continuously
between ensuring SLOs and improving the model

1080p
1080p

1.0

0.8

0.6

0.4

0.2 |III §-0.2
-0.0 -0.0

5 10 15 20 25fps 5 10 15 20 25fps
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Il - Summary

Limitations & Challenges (1/2)

Active Inference for Digital Twins:
Predicting and Optimising loT Processing Service Performance
u

High cost of running empirical experiments; slow
training progress, needs training environment.

— Train agents in simulated environments; creating
accurate environment, like for digital twinning

Upcoming paper at ACM loT [14]

[14] Pretel E., Sedlak B. et al., Active Inference for Digital Twins: Predicting and Optimising loT Processing Service Performance, at ACM loT 2025
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upf.| |l - Summary

Limitations & Challenges (1/2)

High cost of running empirical experiments; slow
training progress, needs training environment.

— Train agents in simulated environments; creating
accurate environment, like for digital twinning

Overhead of extracting baselines from publication;
low rigor from generic algorithms, e.g., SB3

— Support baseline comparison and standardized
problem instances in evaluation environment

Upcoming paper at ACM loT [14]

[14] Pretel E., Sedlak B. et al., Active Inference for Digital Twins: Predicting and Optimising loT Processing Service Performance, at ACM loT 2025
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upf| Il - Summary
Limitations & Challenges (1/2)

High cost of running empirical experiments; slow
training progress, needs training environment.

— Train agents in simulated environments; creating
accurate environment, like for digital twinning

Overhead of extracting baselines from publication;
low rigor from generic algorithms, e.g., SB3

— Support baseline comparison and standardized
problem instances in evaluation environment

Governance limited to individual vendor; SLAs only
supported by one provider and its subset of nodes

— Create overarching models for orchestration and
client compensation; technical & economical part

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak

Provider A

)

\\\\\\

CC infrastructure split between providers

Provider B
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Il - Summary
Limitations & Challenges (2/2)

Missing sovereignty over data processing; devices
rarely in possession of service consumers

— Integrate personal devices into infrastructure;
combine with personal wallets and trusted env.

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak
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Il - Summary
Limitations & Challenges (2/2)

Missing sovereignty over data processing; devices
rarely in possession of service consumers

— Integrate personal devices into infrastructure;
combine with personal wallets and trusted env.

Rigid inference quality for recommending actions;
prone to violate operational boundaries, e.g., time

— Consider resources and context when inferring
actions, e.g., smaller graph; create elastic certainty

Robust Service Orchestration for Computing Continuum Systems - Boris Sedlak

Bayesian network
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